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Abstract:

Factorial survey analysis is a statistical technique with a long history of use in decision-oriented organizational and
information systems (IS) research. The technique produces a collection of standardized regression coefficients that
help one to rank survey factors by importance. However, such rankings may be invalid because a researcher might
not account for two related issues: unequal factor (i.e., dimension) manipulation effect sizes and the inherent
multilevel structure of factorial survey data. We address these concomitant issues by demonstrating the ranking
problem in simulated datasets, explaining the ranking problem’s underlying statistical causes, and justifying the use of
remediating statistical methods. In particular, we focus on coding proportional to effect, a technique in which one
consolidates corresponding dimension-level dummy (0, 1) variables into a single re-calibrated independent variable
that is regressed on the dependent variable. One then uses the resulting standardized coefficients to rank the factors.
We assess the advantages, disadvantages, and limitations of remediation techniques and offer suggestions for future
information systems research.
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184 Ranking Factors by Importance in Factorial Survey Analysis

1 Introduction

The factorial survey method—also known as policy capturing, conjoint measurement, scenario studies,
and experimental vignette methodology (Ongena, van de Wijngaert, & Huizer, 2013; Aguinis & Bradley,
2014)—assesses an individual's responses to decision processes. Factorial surveys combine controlled
treatments from a multivariate experimental design with sampling techniques of survey procedures (Rossi
& Anderson, 1982). Researchers construct treatments in a controlled design from discrete levels of salient
orthogonal variables. Depending on the research question, researchers may construct treatments as
hypothetical stories or objects (Rossi & Anderson, 1982). Treatments constructed as stories—also called
vignettes or conjoints—often include fictional characters engaged in a specific behavior (Alexander &
Becker, 1978). Treatments constructed as object descriptions—also called profiles (Krieger, Green, &
Umesh 1998)—include salient characteristics and features (e.g., car profiles may list color, price, mileage,
maximum speed, and length; Steckel, DeSarbo, & Mahajan, 1991). Subjects review one or more
treatments and then complete a survey about each treatment. Analysis of factorial survey data describes
statistical relationships between message cues and subject judgments, which one can use to rank the
independent variables by importance.

Researchers have used factorial surveys across a variety of IS contexts, including IS policy compliance
(D’Arcy, Hovav, & Galletta, 2009; Moores & Chang, 2006; Lee, Crossler, & Warkentin, 2013),
communication media choice (Webster & Trevino, 1995), mobile technology adoption (Bouwman & van de
Wijngaert, 2009), user-interface design testing (Vance, Lowry, & Eggett, 2015), and computer abuse and
IS policy violations (Guo, Yuan, Archer, & Connelly, 2011; Vance, Lowry, & Eggett, 2013; Johnston,
Warkentin, McBride, & Carter, 2016; Trinkle, Crossler, & Warkentin, 2014; Willison, Warkentin, &
Johnston, 2016). Its popularity in information security research (Crossler et al, 2013) reflects its common
use for studying deviant behaviors in criminology (Barlow, Warkentin, Ormond, & Dennis, 2013) and
ethical issues in business decision making (O’Fallon & Butterfield, 2005). Researchers have also applied
factorial survey analysis to other organizational contexts such as ethical decision making (Harrington,
1996; Trevino & Victor, 1992), professional reconciliation decisions (Tomlinson, Dineen, & Lewicki, 2004),
job searches, compensation, employee discipline, job analysis, sexual harassment, employment
interviews, and contract arbitration (Karren & Barringer, 2002).

Researchers often analyze factorial survey data using Rossi and Anderson’s (1982) two-step method,
which comprises a series of ordinary least squares (OLS) regressions. Though widely used, this two-step
method has two major shortcomings. First, the method does not account for inadvertent unequal
dimension manipulation effect sizes that result from the unequal dimension manipulation intervals. Such
dissimilarities are important because they can create spurious results and potential confounds between
artifacts of the research design and judgments of the sample’s respondents. Second, the two-step method
does not account for the inherent hierarchical, multilevel structure of factorial survey data. Instead, the
two-step method—like other factorial survey methods—collapses multiple vignette judgments from each
individual into a single collective data pool. Since each individual’'s own judgments of their assigned
vignettes tend to be more similar vis-a-vis the aggregate judgments of all other individuals, collapsing
multilevel data violates two important assumptions of OLS regression: 1) the independence of cases and
2) homoscedasticity of residuals (Hox, Kreft, & Hermkens, 1991). Collapsing also aggregates vignette-
level and individual-level error variance into one residual, which means that within- and between-individual
variation cannot be distinguished (Wallander, 2009). A second set of problems stems from individual
variation in main effects (i.e., which one would assess based on variation in intercepts across individuals)
and in rates of association or rates of change across vignettes (i.e., which one would assess based on
variation in slopes across individuals). Thus, unmodeled multilevel structures can hide individual-level
effects on vignette-level relationships that may change the values and meanings of results from analyses
that do not use a multilevel approach.

Unfortunately, Rossi and Anderson’s (1982) two-step method does not rectify these two problems.
Consequently, spurious rankings can compromise theoretical generalizability and practical usefulness.
Since practitioners may use the two-step method’s results to guide organizational decision making (e.g.,
establishing fair price thresholds for childcare; Shlay, Tran, Weintraub, & Harmon, 2005; determining
sanction certainty and/or severity in IS security practices; D’Arcy et al., 2009), it is important for
researchers and practitioners to avoid spurious rankings that can produce adverse organizational
outcomes.

Volume 42 Paper 8

www.manaraa.com



Communications of the Association for Information Systems 185

In this paper, we address the above shortcomings and, thus, help to establish best practices for Rossi and
Anderson’s (1982) two-step method in particular and factorial survey analysis in general. We organize the
paper into two parts. In the first part, we mathematically examine unequal dimension manipulation effect
sizes, and, in the second part, we examine multilevel modeling techniques. In each part, we focus on the
ranking of standardized coefficients for vignette dimensions and illustrating potential remediation. We also
highlight applications and limitations of each technique in IS research.

2 Analyzing Factorial Survey Data

Factorial surveys are particularly useful when subjects may be reluctant to express their inclination to
perform a deviant behavior. To mitigate potential social desirability bias, researchers instead ask subjects
how they might respond if they were the vignette character or whether they would act in the same manner
as the vignette character. When written in an indirect and unintimidating way, vignettes diffuse a subject’s
personal responsibility for performing a maladaptive act. In this way, factorial surveys can mitigate social
desirability, acquiescence, or other cognitive and social biases while capturing a subject’s true intentions.
Appendix A displays an example of a full factorial survey vignette.

In step one of Rossi and Anderson’s (1982) two-step method, a researcher regresses the dependent Y
variable on dummy (0, 1) vignette-level independent variables that represent the absence or presence,
respectively, of statements that describe a particular level for a particular dimension in a corresponding
vignette. In the parlance of factorial survey analysis, a dimension refers to “a discrete variable associated
with the phenomenon being studied” and a level is a “specific value within a dimension” (Shlay et al.,
2005, p. 397). The vignette in Appendix A provides examples of dimensions and intervals. Self-efficacy is
an example of a dimension. The vignette operationalizes levels in the self-efficacy dimension as follows:
low self-efficacy by the statement “[Joe] is not confident he can do it again easily” and high self-efficacy by
the statement “[Joe] is confident he can do it again easily”. Each dimension level is, in turn, associated
with a certain AY and a corresponding unstandardized regression coefficient G.

The researcher must then correct the unstandardized B coefficients from step one to account for unequal
dimension-level intervals within each dimension. Thus, in step two, the researcher implements this
correction through coding proportional to effect (CPE), a process that “recalibrate[s] the scale so the
intervals are proportional to the ‘effect’ of each category [i.e., each dimension level]” (Boyle, 1970, p. 465).
CPE involves replacing each dummy variable that represents a level included in the model (i.e., in which
the dummy variable is equal to 1) with its corresponding unstandardized coefficient 8 from step one’s
regression. Levels that act as a reference group (i.e., those levels not included in the model or
represented by a dummy value equal to 0) do not require that replacement because the corresponding 8
would equal zero. The researcher then sums the separate unstandardized coefficients for each dimension
level from step one into a single independent variable that represents that one dimension and regresses
the Y variable on these aggregated single independent variables. “This technique”, explains Lauder
(2002), “allows for an examination of the contribution of each dimension, relative to, and controlling for, all
other dimensions in the model” (p. 40). The researcher can then use the standardized coefficients B of
this step two regression as an index to rank vignette-level dimensions by their degree of influence on the
Y variable. Note that, to do so, one must use the standardized coefficient B—not the unstandardized f—
because the latter will equal (or approximately equal) 1.00 in the step two regression.

3 Message Manipulations and Dimension Effect Sizes in Factorial
Surveys

While the CPE technique accounts for unequal dimension-level intervals within each dimension, Rossi
and Anderson’s (1982) two-step method does not account for unequal intervals between dimensions (e.g.,
across factors being studied). A researcher may inadvertently introduce unequal dimension interval
sizes—and corresponding dissimilarities in dimension manipulation effect sizes—when dimension-level
statements are too limited, too extreme, or inconsistent across dimensions, which is particularly true of
vignettes that incorporate meaningful but imprecise qualitative descriptors. Indeed, creating message
content and cues can be challenging because the researcher must balance the needs of 1) producing a
vignette storyline that is reasonably believable by the sample pool and 2) manipulating subjects
sufficiently to produce acceptable variation in the dependent variable. Since the wording of each
dimension-level statement is a product of the individual research designer, confounds between treatment
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186 Ranking Factors by Importance in Factorial Survey Analysis

and subject effects can occur (Netemeyer, Bearden, & Sharma, 2003). As we show next, significant
dissimilarities in dimension manipulations levels can compromise the validity of dimension ranking in CPE.

One way to demonstrate how differing manipulation effect sizes arise from unequal dimension intervals is
to examine the mathematical relationship between standardized and unstandardized regression
coefficients. Standardized regression coefficients are calculated as follows:

B 7ﬁx*’s‘x (1)

Sy

where By is the standardized regression coefficient of x, Bx the unstandardized coefficient of x, sx the
standard deviation of x, and sy the standard deviation of y.

Equation 1 indicates that both Bx and sx must be assessed to calculate Bx. As we discuss above, the two-
step method addresses differences in within-dimension manipulation effect sizes (i.e., the differences in
AY intervals across dimension-level statements) by substituting step one’s Bx values for dummy-level
values in the CPE calculation of Bx in step two. Unfortunately, neither step one nor step two account for
variations in dimension interval size (i.e., as sx in Equation 1 represents), and, therefore, neither
addresses differences in between-dimension manipulation effect sizes (i.e., the differences in AY intervals
between the factors being studied). This shortcoming means that within-dimension manipulation effects
are equalized but between-dimension manipulation effect sizes are not. We explore the ramifications of
unequal dimension intervals—and their corresponding effects on dimension manipulation effect size and
dimension ranking—in our examples that use Datasets 1-3.

Note that a researcher can mitigate the impact of unequal dimension intervals in several ways, such as
grounding message cues on current practice, economic costs, or other organizational factors to create
realistic vignette storylines (Dallal, 2001). Furthermore, the researcher should perform such mitigation
efforts during the research design phase of the study because CPE and multilevel analysis cannot
account for unequal effect sizes between dimensions. Thus, Dallal’'s (2001) suggestions are similar to
many common research-design practices, such as keeping surveys short to minimize survey fatigue and
non-response bias (Kriauciunas, Parmigiani, & Rivera-Santos, 2011) and obtaining measures from
different sources to minimize common method variance (Podsakoff, MacKenzie, & Lee, 2003).

We demonstrate the consequences of unequal dimension manipulation effect sizes on dimension ranking
in CPE to underscore the importance of such mitigation efforts. We created three different single-level
(i.e., non-multilevel) datasets, all inspired by Johnston et al.’s (2016) example in Appendix A. Briefly, that
example—which draws on deterrence theory in social psychology and criminology—has shown that
perceptions of the certainty, severity, and celerity (i.e., swiftness) of punishment are positively associated
with intention to comply with information security policies. That is, individuals are more likely to follow
organizational policies when they see punishments as severe, certain, and/or swift. Johnston et al. (2016),
like other researchers who have conducted research in criminology and information security (e.g., Herzog,
2003; Vance, Lowry, & Eggett, 2013), investigated those relationships using factorial survey analysis.
Accordingly, we use perceptions of Certainty, Severity, and Celerity as dimensions (i.e., independent
variables) and Intention to Comply (IntComply) with information security policies as the dependent
variable.

In the two-step method, dummy variables set at O or 1 represent the absence or presence, respectively, of
dimension-interval statements in the vignette. Beta coefficients from the regressions in the two-step
method indicate the effect of a manipulation dummy variable on the outcome variable IntComply.
Importantly, in our demonstration, we assume that our qualitative variables are based on underlying
quantitative scales that our hypothetical researcher does not know about. Thus, we ask the reader to keep
this important assumption in mind as we discuss the quantitative aspects of our demonstration.

Table 1 summarizes the parameter specifications for Datasets 1, 2, and 3. Datasets 1 and 2 demonstrate
two different experiments that have equivalent dimension intervals (and dimension manipulation effect
sizes) for Celerity that are measured in two alternative but interconvertible scales (e.g., when one study
mentions timeframes in days but another in weeks). In Table 1, the dimensions levels of low, medium, and
high Celerity (i.e., Cel_Low, Cel _Med, and Cel_Hi in the third row) in Dataset 1 are equal to one-third of
those in Dataset 2, while the g1 value for Dataset 1 (i.e., the Celerity coefficient in the second row in Table
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1) is three times that of Dataset 2. Thus, the differences balance out; for example, the partial effect of 81 *
Cel _Med in Dataset 1 equals 1.50 * 0.50 = 0.75, while the partial effect of 81 * Cel _Med in Dataset 2
equals 0.50 * 1.50 = 0.75. Note that we set the differences between low-med and med-high intervals for
each dimension in Table 1 to be equal for ease of calculation and presentation. We would not necessarily
expect such equalities in real-world data.

Table 1. Parameters Used to Generate Datasets 1, 2, and 3

Vignette-level parameter Dataset 1 Dataset 2 Dataset 3
IntComply-intercept (Bo) 0.00 0.00 0.00
B1 (Celerity coefficient) 1.50 0.50 1.50
Cel_Low/ Cel_Med | Cel_Hi (dimension-level) effects 0.00/0.50/1.00 | 0.00/1.50/3.00 | 0.00/1.50/3.00
B2 (Certainty coefficient) 1.25 1.25 1.25
Crt_Low/ Crt_Med / Crt_Hi (dimension-level) effect size | 0.00/0.50/1.00 | 0.00/0.50/1.00 | 0.00/0.50/1.00
Bs (Severity coefficient) 2.00 2.00 2.00
Sev_Low / Sev_Med | Sev_Hi (dimension-level) effect size | 0.00/0.50/1.00 | 0.00/0.50/1.00 | 0.00/0.50/1.00
Residual (et) 0.00 (0.40) 0.00 (0.40) 0.00 (0.40)

Notes: we include standard deviations (in parentheses) where applicable (e.g., for residuals). N = 10,800 (400 individuals, 27
vignettes each). Coefficients and dimension-level effect sizes for variables Certainty and Severity (e.g., B2, Crt_Low, and Crt_Hi; (s,
Sev_Low, and Sev_Hi) remain constant across all three datasets.

Datasets 1 and 3, on the other hand, demonstrate unequal dimension interval effect sizes. The dimension
levels for Cel_Low, Cel_Med, and Cel_Hi (third row) in Dataset 3 are three times those of Dataset 1, but
the relationship between Celerity and IntComply (i.e., the respective Celerity coefficients, (1, in the second
row) are equal. Thus, the differences do not balance; for example, the partial effect of 81 * Cel_Med in
Dataset 1 equals 1.50 * 0.50 = 0.75, while the partial effect of 81 * Cel Med in Dataset 3 equals 1.50 *
1.50 = 2.25. Dimension-level intervals, manipulation effects, and coefficients for the low-, medium-, and
high-level dummy variables for Certainty and Severity (i.e., Crt_Low, Crt_Med, Crt_Hi, Sev_Low,
Sev_Med, and Sev_Hi, respectively) are constant across all three datasets.

We generated the three datasets using R version 3.3.2. We generated them across 400 individuals with
each individual associated with all 27 vignettes from our 3 x 3 x 3 design. This research design produces
a vignette-level sample size of 10,800. Figure B1 in Appendix B provides the code we used to develop
these datasets, and Tables B1 and B2 provide the descriptive statistics.

Given that researchers commonly use Rossi and Anderson’s (1982) two-step method to analyze factorial
survey data, we begin our study with OLS regressions—which that method uses—in order to establish a
baseline for comparing current practice with multilevel modeling in Section 4. Tables 2 and 3 display the
results from the OLS analyses of Datasets 1, 2, and 3. We label the models as follows. The first number
refers to the table number (i.e., Table 2 or 3); Tables 2 and 3 display results from steps one and two,
respectively, of Rossi and Anderson’s (1982) two-step method. The second number represents the
dataset the model used. We used the low-level variables of each dimension (i.e., Cel_Low, Crt_Low, and
Sev_Low) as the reference levels for these analyses; therefore, we omitted them to avoid linear
dependencies. We used IBM SPSS Statistics version 24 to perform the analyses. Table 2 (step one)
shows that equivalent dimension manipulation effect sizes produced from interconvertible scales—with
coefficients adjusted accordingly—in Datasets 1 and 2 produce similar coefficient estimates for the
Celerity dummy variables (i.e., the Cel_Hi coefficient, 81, = 1.50 and the Cel_Med coefficient, B2, = 0.75 in
Models 2-1 and 2-2). In turn, variables Celerity, Certainty, and Severity are ranked in the same order in
Models 3-1 and 3-2 in step two in Table 3 (i.e., Severity > Celerity > Certainty).
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Table 2. Comparison of Step One Analyses of Datasets 1-3

Unstandardized coefficients (B)

D‘;g‘o'zg’ﬁ‘é?::tg')es Model 2-1 (Dataset 1) Model 2-2 (Dataset 2) Model 2-3 (Dataset 3)
True value? | Simulated® | True value? | Simulated® | True value® | Simulated®

IntComply-intercept (Bo) 0.000 {3&1(]) 0.000 (8:833) 0.000 '(06900180)

Col Hi (81 1,500 1.506*** 1,500 1.505*** 4500 4,509

_ [1.50x1.00] | (0.010) | [0.50x3.00]| (0.009) | [1.50x3.00]| (0.0109)

0.750 (0.747" 0.750 0.746™* 2.250 2,265

Cel_Med (Bz) [1.50x0.50] | 0.010) | [0.50x1.50]| (0.009) |[1.50x1.50]| (0.009)

Crt Hi (B 1.250 1,249+ 1.250 1,245+ 1.250 1,254+

L [1.25x1.00]| (0.010) | [1.25x1.00]| (0.009) |[1.25x1.00]| (0.009)

0.625 0.627"* 0.625 0.621%* 0.625 0.631%**

Crt_Med (Bs) [1.25x0.50]| (0.010) | [1.25x0.50]| (0.009) |[1.25x0.50]| (0.009)

Sov. Hi (B) 2.000 2.012%* 2.000 1,997+ 2.000 1.091%*

_Hi (Bs [2.00x1.00] | (0.010) | [2.00x1.00]| (0.009) |[2.00x1.00]| (0.009)

Sev. Med () 1.000 1.003*** 1.000 0.994" 1.000 0.987

a 6 [2.00x050] | (0.010) | [2.00x0.50]| (0.009) |[2.00x050]| (0.009)

Notes: N = 10,800 at vignette level; N = 400 at individual level.
@We show calculations for true values (i.e., dimension coefficients for Celerity, Certainty, or Severity multiplied by dimension-level
manipulation effect hi or med) in square brackets.
b We show unstandardized coefficient estimates, standardized coefficient estimates, and robust standard errors for simulated

coefficients in round brackets.
***p<.001,* p<.01,*p<.05.

Table 3. Comparison of Step Two (CPE) Analyses of Datasets 1-3

Aggregate dimension Model 3-1 (Dataset 1) Model 3-2 (Dataset 2) Model 3-3 (Dataset 3)
variables Unstd. (8) | Stand.(B) | Unstd.(B) | Stand.(B) | Unstd.(B) | Stand.(B)
(coefficients) coefficient | coefficient | coefficient | coefficient | coefficient | coefficient
. -0.011 0.006 -0.008
IntComply-intercept (Bo) (0.009) (0.009) (0.009)
. 1.000*** . 1.000*** - 1.000*** ok
Celerity (81) (0.006) 0.506 (0.006) 0.508 (0.002) 0.870
. 1.000*** . 1.000*** ok 1.000*** -
Certainty (B2) (0.008) 0.420 (0.008) 0.420 (0.008) 0.242
. 1.000*** ok 1.000%** . 1.000*** .
Severity (83) (0.005) 0.676 (0.005) 0.674 (0.005) 0.384

Notes: N = 10,800 at vignette level; N = 400 at individual level.

#We show calculations for true values (i.e., dimension coefficients for Celerity, Certainty, or Severity multiplied by dimension-level

manipulation effect hi or med) in square brackets.

b We show unstandardized coefficient estimates, standardized coefficient estimates, and robust standard errors for simulated

coefficients in round brackets.
***p<.001,* p<.01,*p<.05.

Comparing the step one results in Models 2-1 and 2-3 (i.e., Datasets 1 and 3, respectively) reveals
different 81 coefficient estimates for their Cel_Hi dummy variables and different 82 coefficient estimates for
their Cel_Med dummy variables. These differences arise because the dimension interval effect sizes in
Dataset 3 are three times those of Dataset 1 even though both datasets are based on the same “true
value” for the Celerity coefficient (i.e., 1.50; Table 1, second row). Figure 1 illustrates how these unequal
dimension manipulation intervals for the Celerity variable can generate such differences.
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Figure 1. Comparative Marginal Effects of Cel_Hi Dummy Variable on Intention to Comply, Dataset 1 vs. 3

Figure 1 draws on Table 1 (i.e., 81 in Table 1, Row 2) to illustrate the regression of IntComply on the
underlying Celerity factor after controlling for Certainty and Severity. In other words, the vertical axis
shows the marginal effect of Celerity on IntComply. Figure 1 also displays the marginal effects of the
Cel_Hi dummy variable intervals from Datasets 1 and 3 on IntComply: to the left of the graph in Figure 1
are lines that represent the marginal values of IntComply from Datasets 1 and 3; to the bottom are lines
that represent the relationship between the Celerity scale and the Cel_Hi dummy variables from Datasets
1 and 3. An important characteristic of the Cel_Hi dummy variable lines is that, while they represent
different ranges of values on the Celerity scale, the same dummy variable value (i.e., 1) represents them
in the step one regression equations. In other words, a “1” value that signifies the Cel_Hi dummy variable
in Dataset 3 represents three times the effect of Celerity than the “1” value that signifies the Cel Hi
dummy variable in Dataset 1. Consequently, there is also a three-fold increase in the Cel_Hi regression
coefficient in Dataset 3 over that of Dataset 1 (i.e., 81, Table 2, Row 2). This three-fold difference in the B+
coefficients will eventually—and adversely—affect the rankings of the standardized B coefficients in step
two. Thus, Figure 1 demonstrates how unequal dimension intervals create inconsistent rankings of the
standardized B coefficients in Rossi and Anderson’s (1982) two-step method.

Mathematically comparing the sequential or Type | sum of squares for Cel _Hi and Cel_Med explains
these effects (Appendix C). This comparison has at least two important ramifications. First, comparing the
models in Tables 2 and 3 shows that larger dimension intervals inflate both the unstandardized 8 and
standardized B coefficients of Celerity in steps one and two, respectively. In turn, the inflated standardized

B coefficient, if used to rank coefficients, would place Celerity higher than Certainty and Severity in Model
3-3 but lower than Severity in Model 3-1. Again, the difference in ranking would arise due to the unequal
dimension interval and manipulation effect sizes of Celerity rather than per unit association between
Celerity and the dependent variable IntComply. The situation is of little concern when a researcher uses
transformable interval scales (e.g., Model 3-1 vs. 3-2) because the B coefficients will account for such
differences (e.g., the coefficient for weeks will be seven times that of the coefficient for days).
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190 Ranking Factors by Importance in Factorial Survey Analysis

The second ramification is that unequal dimension interval and manipulation effect sizes may be more
likely in qualitative statements when wording or meaning is inconsistent or ambiguous across dimensions.
This latter conclusion strongly questions the generalizability of rankings across studies. A more reliable
way to mitigate this problem involves replacing qualitative statements and their dummy (0, 1) variables
with more precise statements that contain quantified dimension levels as the policy-capturing technique
does (e.g., Stewart, 1988; Aiman-Smith, Scullen, & Barr, 2002; Karren & Barringer, 2002). The policy-
capturing design avoids the CPE process altogether.

A third ramification is that the validity of multilevel modeling of factorial surveys will rely ultimately on the
underlying research design. Researchers must, therefore, take care to ensure the quality of the
dimensions and levels used in the vignettes and judiciously consider the impact of unequal dimension
intervals and manipulation effects on CPE rankings—especially if the B values are close. Researchers
should also acknowledge the possibility that unequal dimension manipulations are a limitation of their
research.

The examples we present in Tables 1-3 suggest that quantified dimensions (i.e., as found in the policy-
capturing method) are superior to CPE-based standardized coefficients as a means for ranking vignette
dimensions. Our analyses are consistent with previous research; for example, Dallal (2001) argues that
comparisons of standard coefficients to determine importance can be “illusory” when rankings depend on
“the specific context and why the question is being asked” or how easily the subject can modify the value
of an independent variable (e.g., “time watching television” versus “weight or cholesterol level’” and “height
or age”). Dallal (2001) opines that: “This is not an issue if the question asks what most determines the
response, but it is critical if the point of the exercise is to develop a public policy to effect a change in the
response”. Dallal’'s argument is also germane to organizational contexts. For example, improving
information security can involve managerial costs of policy and procedure updates, hardware and
software investments for enhancing detection certainty, personnel costs from shortening process times
and improving celerity, and administrative costs for adjudicating increased appeals due to more severe
punishments.

Though quantitative variables are more desirable, they may not be feasible in all situations. In such cases,
the researcher should pattern treatment dimension levels after actual organizational practices. Such
advice means extra work for the research team, but it is worthwhile for at least two reasons. First, the
resulting experiment will align more faithfully to organizational reality. Second, more realistic experiments
help set the stage for increasing the validity of a study’s contributions to theory and practice (e.g.,
experiments that the dimension manipulation effect size of low-ranking factors may lead to
recommendations on how to improve organizational outcomes).

4 Multilevel Modeling of Factorial Survey Data

As we state above, two of the most egregious problems of failing to use multilevel modeling are violations
of the assumptions of independence of cases and homoscedasticity of residuals. Multilevel analysis
avoids these problems in factorial survey analyses by modeling individual-level characteristics and their
cross-level effects on vignette-level characteristics and responses. Indeed, past IS research has
demonstrated the value of multilevel modeling (e.g., Bélanger & Crossler, 2011; Burton-Jones & Gallivan,
2007; Mithas, Ramasubbu, Krishnan, & Fornell, 2006-7), including some research that has used factorial
survey methods (e.g., Vance et al., 2015; Bouwman & van de Wijngaert, 2009). However, these latter
multilevel modeling efforts have largely only controlled for the effects of age, gender, and other
demographic variables, which leaves much fertile ground for future factorial survey-based IS research. IS
researchers could also use individual-level factors such as attitudes and personality traits (e.g., Hurt et al.,
1999) and self-efficacy and fear of failure (e.g., Mitchell & Shepherd, 2010), which multilevel management
and entrepreneurship researchers have used, in their research. We hope the following sections inspire
such efforts.

Note that multilevel modeling does not mitigate the effects of the unequal dimension effect sizes (see
Section 3). Indeed, as we say above, researchers can mitigate those unwanted effects by grounding
message cues on current practice, economic costs, or other organizational factors to create realistic
vignette storylines (Dallal, 2001). However, they must take these measures during research design (i.e.,
before collecting data) because they cannot account for them with multilevel modeling and methods.
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4.1 Construction of Simulated Dataset 4

We demonstrate the dangers of ignoring multilevel structures in factorial surveys—and their consequent
effects on CPE—by extending Hox et al.’s (1991) example to include cross-level moderation effects. We
demonstrate factorial survey analysis and CPE using random coefficients modeling (RCM), a regression-
based type of multilevel modeling. Our models are based on three level-one dimensions from the example
in Appendix A (i.e., Celerity, Certainty, and Severity). We represent each dimension with three levels (e.g.,
Cel_Low, Cel_Med, and Cel_Hi) and model each one with their corresponding dummy (0, 1) variables.
Our models also incorporate a continuous individual-level (level-two) variable, risk aversion (RiskAverse),
which the example in Appendix A suggests (i.e., “persons exhibiting a strong stability meta-trait are found
to be more risk-averse and may avoid actions that place them at risk for threat and sanction-related
consequences”; Johnston et al., 2016, p. 243). In our simulated datasets, RiskAverse exerts a direct
cross-level effect on the level-one intercept and a positive moderating effect on the relationships between
the Celerity dimension levels and the dependent variable InfComply. That is, individuals with high levels of
RiskAverse will also exhibit strong positive associations between Celerity and IntComply, while individuals
with low levels of RiskAverse will also exhibit weak positive associations between Celerity and IntComply.
Further, mq and Bgs represent vignette-level (level-one) and individual-level (level-two) coefficients,
respectively: g represents the predictor’s level-one order (0 to Q), and s represents the predictor’s level-
two order (0 to S). Note that while g applies to both levels, s applies only to level-two predictors.

We generated Dataset 4 using R version 3.3.2. We generated the dataset across 400 individuals with
each individual associated with all 27 vignettes. This design produced a vignette-level sample size of
10,800. The vignette-level (level-one) magnitudes and coefficients in Dataset 4 mirror those in Dataset 1.
Figure D1 in Appendix D provides the code we used to generate Dataset 4.

4.2 An OLS Modeling of Dataset 4

We analyzed Dataset 4 using the traditional two-step OLS regression method of factorial survey analysis
to provide a baseline comparison for our multilevel analyses. The low-level variables of each dimension
(i.e., Cel_Low, Crt_Low, and Sev_Low) served as reference levels for this analysis; as such, we deleted
them from subsequent models to avoid linear dependencies. We used IBM SPSS Statistics version 24 for
the analyses. Tables 4 and 5 display the results of the step one and step two analyses. In step one, one
regresses the dependent variable IntComply on dummy (0O, 1) vignette-level independent variables that
represent the absence or presence, respectively, of statements that describe a particular level for a
particular dimension in a corresponding vignette. In step two, one accounts for unequal dimension-level
intervals within each dimension via CPE. Briefly, the CPE process replaces each level that has a dummy
variable equal to 1 with its corresponding unstandardized coefficient 8 from the step one regression and
then sums each dimension’s Bs into a single independent variable. Levels that have a dummy variable
equal to zero act as reference groups; as such, the step one regression does not include them, and they
are not relevant to step two. The researcher then regresses the recalibrated dimension scales on the

independent variable and uses the resulting standardized Bx coefficients as an index to rank dimensions

by importance. The standardized Bx coefficients in Table 5 indicate the most important factor is Celerity
followed in order by Severity and Certainty. Note that this ranking differs from the coefficients we used to
construct Dataset 4 (i.e., Celerity: 1 = 1.50, Certainty: B2 = 1.25, and Severity: 83 = 2.00; Table D2,
Appendix D). This difference is not unexpected given the positive moderating effects of RiskAverse on the
relationship between Celerity and the dependent variable IntComply. While one could argue that the
results in Table 5 do correctly rank Celerity as the most important coefficient, one can see that OLS
regression obscures RiskAverse’s effect on the Celerity coefficient. We explain this relationship—and its
consequences on CPE ranking—in more detail in Section 4.3.

Volume 42 10.17705/1CAIS.04208 Paper 8

www.manaraa.com



192 Ranking Factors by Importance in Factorial Survey Analysis

Table 4. OLS Estimates from Multilevel Factorial Survey Data (Step One, Dataset 4)

Variables (coefficients) True values (from Table 1) Unstandardized coefficients (g8)
IntComply-intercept (Bo) 0.000 0(75)12;;*
Cel_Hi (B1) 1.500 2&?07175 *
Cel_Med (Bz) 0.750 oty
Crt_Hi (Bs) 1.250 oty
Crt_Med (B4) 0.625 Ofo416;;*
Sev_Hi (Bs) 2.000 255)185;*
Sev_Med (Bs) 1.000 1 fgfg;*

Notes: N = 10,800 at vignette level; N = 400 at individual level. We show unstandardized coefficient estimates and robust standard
errors in parentheses. Adjusted R? = 0.79.
***p<.001,*p<.01,*p<.05

Table 5. OLS Estimates from CPE Multilevel Factorial Survey Analysis (Step Two, Dataset 4)

Regression coefficients
Dimension
Unstandardized (g) Std. Error Standardized (Bx) Rank
IntComply-intercept 0,702+ 0017
(Bo)
Celerity 1.000*** 0.007 0.665 1
Certainty 1.000%** 0.014 0.313 3
Severity 1.000%** 0.009 0.499 2

Notes: N = 10,800 (400 individuals, 27 vignettes each). Adjusted R? = 0.79. Values for the independent variables are unstandardized
regression coefficients from Table 4. Rank of importance based on standardized coefficients.
***p<.001,*p<.01,*p<.05.

4.3 Modeling Dummy (0, 1) Variables in Multilevel Factorial Survey Analysis

Our RCM approach follows the traditional procedure of constructing the unconditional model first followed
by a series of conditional models that test the effects of level-one and level-two variables (Raudenbush &
Bryk, 2002). We constructed and analyzed all random coefficients models with HLM for Windows version
7.01 using full maximum likelihood estimation. As in our unequal dimension manipulation effect sizes
examples in Section 2, we assume that our hypothetical researcher does not know the underlying
quantitative scales used to construct Dataset 4. Again, we ask the reader to keep this assumption in mind
as we discuss our next examples.

Our RCM analysis of Dataset 1 begins with step one of the two-step factorial survey analysis procedure.
We use four random coefficient models, all of which use uncentered level-one variables. The 0.00 values
for Celerity, Certainty, and Severity represent the Cel _Low, Crt_Low, and Sev_Low dimension levels,
respectively. The first model (i.e., Model 6-1, Table 6) is a fully unconditional model that contains no level-
one or level-two predictors. Thus, it serves as a baseline from which improvements in subsequent models
can be assessed (Raudenbush & Bryk, 2002). Model 6-2 adds the six “H” and “Med” level-one dummy
variables (e.g., Cel_Hi, Cel_Med). We omit the “Low” dimension levels (i.e., Cel Low, Crt Low, and
Sev_Low) so they can serve as reference points for their corresponding dummy (0, 1) variables. Model 6-
3 assesses the direct and moderating effects of the (uncentered) level-two predictor RiskAverse.
RiskAverse’s direct effect is assessed on mo (i.e., the IntComply-intercept), while its moderating effects are
assessed on the six dummy (0, 1) coefficients (i.e., m to ms). Figure E1 in Appendix E provides an
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example of the multilevel equations in the HLM interface for Model 6-4 that can help explain the values
listed in Table 6.

Table 6. RCM Analysis of Dummy (0, 1) Variables from Factorial Survey: Step One (Dataset 4)

Variables (coefficients) | Truevalue? | Model 61 | Model 62 | Model 6-3 | Model 6-4

Level-one parameters m — 16 (corresponding level-two intercept Boo — Beo)

1Mo (Boo, level-two intercept for - 0.702*** -0.035 -0.024
IntComply intercept o) 0.00 367477 (030)| (g1 (.035) (.030)
M1 (810, level-two intercept for 1.50 2.677*** 1.497*** 1.497***
Cel_Hi coefficient 1) [1.50 x 1.00] (.029) (.039) (.039)
M2 (B20, level-two intercept for 0.75 1.324*** 0.753*** 0.753***
Cel_Med coefficient 12) [1.50 x 0.50] (.016) (.027) (.027)
M3 (B30, level-two intercept for 1.25 1.259*** 1.270*** 1.259***
Crt_Hi coefficient 1m3) [1.25 x 1.00] (.009) (.023) (.009)
M4 (B40, level-two intercept for 0.625 0.646*** 0.650*** 0.646***
Crt_Med coefficient 1m4) [1.25 x 0.50] (-009) (.024) (.009)
s (850, level-two intercept for 2.00 2.008*** 2.014*** 2.008***
Sev_Hi coefficient 17s) [2.00 x 1.00] (.009) (.022) (.009)
16 (Be0, level-two intercept for 1.00 1.003*** 1.017*** 1.003***
Sev_Med coefficient 176) [2.00 x 0.50] (.009) (.025) (.009)
Direct and moderating effects of uncentered RiskAverse on level-one coefficients m — ms
. 0.252*** 0.248***
Bo1 (1m0, IntComply-intercept) 0.25 (.035) (.009)
. 0.40 0.403*** 0.403***
B (m, Cel_Hi) [0.40 x 1.00] (.011) (.012)
0.20 0.195*** 0.195***
B21 (m2, Cel_Mea) [0.40 x 0.50] (.009) (.009)
B+ (s, Crt_Hi) 0.00 ('&2‘;4
Ba+1 (s, Crt_Med) 0.00 ('gdg‘)”
Bs1 (s, Sev_Hi) 0.00 (_(?6332
Bs1 (s, Sev_Med) 0.00 (_86%?5
Goodness of fit
Deviance NA 40,780.3 15,507.9 11,946.5 11,953.7
Number of parameters NA 3 9 43 17
A Deviance from previous model NA -25,272.4*** -3,561.4*** N/A
A Deviance from Model 6-2 NA -3,561.4*** -3,554.2%**

Note: N = 10,800 at vignette level; N = 400 at individual level. We show unstandardized coefficient estimates and robust standard
errors in parentheses. Level-one and level-two variables are uncentered (Hox et al. 1991).

@ True values are the values used to generate Dataset 4, which is based on Dataset 1. We show calculations for true values (i.e.,
dimension coefficients for Celerity, Certainty, or Severity multiplied by dimension-level manipulation effect hi or med) in square
brackets.

***p<.001, ** p<.01, * p<.05.

Model 6-4 is our “final model” (Singer & Willett, 2003) that assesses potential changes in Model 6-3 when
non-significant predictors are removed.

Results in Table 6 demonstrate the value of multilevel modeling. Model 6-2, which does not include the
level-two predictor RiskAverse, overestimates the coefficients for Cel Hi and Cel_Med (i.e., 2.677 and
1.324, respectively; standard errors = 0.029 and 0.016, respectively). That is, the values used to generate
Dataset 4 (Table D2, Appendix D) are not within the 95 percent confidence intervals (Cls) estimated in
Model 6-2. As expected, the coefficient estimates in Model 6-2 match those of the OLS regression model
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in Table 4. However, when RiskAverse is added as an uncentered level-two predictor in Models 6-3 and
6-4, the 95 percent Cls of the level-1 Cel_Hi and Cel_Med coefficients and the IntComply-intercept (i.e.,
Boo) contain the respective inputs used to generate Dataset 4 (i.e., Table D2, Appendix D).

The increased accuracy misleadingly appears to come at the cost of increased level-one standard errors
for the fixed parameters (i.e., the intercept and the Certainty and Severity coefficients). In fact, multilevel
models such as Model 6-3 correctly estimate level-one standard errors because they partition individual-
and group-level variance (Maas & Hox, 2004). Moreover, there are at least two adverse ramifications of
modeling multilevel data with single-level methods. First, it creates a “well-known” downward bias of level-
one standard errors (Maas & Hox, 2004, p. 128). Second, it underestimates variance and standard errors,
which can then elevate the chance of Type | errors—sometimes substantially (Kreft, 1994). In short, the
failure to use multilevel modeling means the researcher may “find effects where they don’t exist”
(Kelloway, n.d., p. 36). Though the increases in many level-one standard errors are three to four times
larger in Model 6-3 than in Model 6-2 and relatively small compared to the sizes of the Bqs coefficients,
these comparative sizes of level-one standard errors and Sqs coefficients are artifacts of our simulated
data that we constructed for ease of demonstration. These comparative sizes should not be considered a
general rule.

The results in Table 6 indicate that multilevel modeling will affect the ranking of Celerity, Certainty, and
Severity by importance in CPE because the CPE calculations used RiskAverse’s effects, as measured by
the coefficients Bo1 — Be1, as inputs. In particular, the higher m and m values in Model 6-2 (i.e., the
single-level model) suggest that Celerity will be ranked higher than Severity, whereas the lower 71 and m
values in Models 6-3 and 6-4 (i.e., the multilevel models) suggest that Celerity will be ranked lower than
Severity.

Table 7 (next page) displays the CPE (step two) results, which are based on the unstandardized m
coefficients from Model 6-4. We calculated the values in Table 7 using HLM for Windows version 7.01
using full maximum likelihood estimation. HLM for Windows does not provide standardized B values, so
we used the standard deviation values Scelerity, Scertainty, Sseverity, and Sintcompy—which the HLM for Windows’
multivariate data matrix (MDM) file provides—to calculate standardized B values via Equation 1. As
expected, the standardized B values for Certainty and Severity in Table 7 remained largely the same as

those from the step two OLS regression in Table 5. However, the standardized B values for Celerity
differed substantially (i.e., 0.665 vs. 0.372 in Tables 5 and 7, respectively).

The standardized B values in Table 7 show that multilevel modeling accounts for the cross-level effects of

RiskAverse on 1o and 1. That is, the order of the B values corresponds to that of the true values used to
construct Dataset 4. These results suggest that researchers should test for potential multilevel effects to
help ensure correct ranking of the level-one dimensions. In turn, such rankings not only provide evidence
of the relative importance of the level-one variables with respect to the dependent variable but also help
illuminate the influence of individual-level factors on vignette-level relationships between design factors
and judgmental outcomes. Such results can provide rich, nuanced insights into theory and practice.

4.4 Centering Effects in Multilevel Factorial Survey Analysis and CPE

A related but often unappreciated decision in multilevel modeling is the centering of variables. While
addressed in much organizational research (e.g., Enders & Tofighi, 2007; Hofmann & Gavin, 1998; Kreft,
de Leeuw, & Aiken, 1995), centering has not received wide attention in factorial survey analyses.
Centering decisions—especially for level-two variables—are important because they affect the values and
meanings of level-one coefficients, which can, in turn, affect the ranking of their respective variables.

Following recommendations in Hox et al. (1991), we have not centered the level-one dummy (0, 1)
vignette variables in our previous models. Their advice is consistent with other recommendations to avoid
centering categorical variables (e.g., Chen, 2014). Thus, our approach differs from common centering
practices in RCM where level-one and level-two predictors are typically grand-mean centered (GMC) or
centered within clusters (CWC). Grand-mean centering an independent variable “yields an intercept equal
to the expected value of Yj for a person with a score on X equal to the mean across all individuals in the
sample” (Hofmann & Gavin, 1998, p. 627). Grand-mean centering is perhaps the more widely
recommended of the two. It provides a more easily interpreted estimate of the Y-intercept, especially

' We thank an anonymous reviewer for this suggestion, which we paraphrase here.
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when Xj = 0 is either outside the sample range or is an unrealistic or spurious value (e.g., immediate
punishment of an ethical violation). Grand-mean centered variables also offer some computational
advantages over uncentered forms (Hofmann & Gavin, 1998). On the other hand, centering within
clusters—also called group-mean centering—of level-one variables is often preferred over grand-mean
centering because the latter confounds a portion of the within- and between-cluster variation. CWC avoids
this confound by centering the level-one variables on the mean of their corresponding level-two cluster
(e.g., individuals in factorial survey designs). The CWC process “removes all between-cluster variation
from the predictor and yields a ‘pure’ estimate of the pooled within-cluster (i.e., Level-1) regression
coefficient” (Enders & Tofighi, 2007, p. 128).

Using uncentered level-one dummy variables in factorial survey analysis has several advantages. First, it
clearly identifies which dimension levels a vignette includes and which it does not, which helps one
interpret the model and its results. Second, using uncentered level-one dummy variables allows the level-
one intercept mo? to represent the expected Y value from a baseline vignette in which all dummy (0, 1)
values equal zero. Nonetheless, centering level-one dummy variables may be useful in some situations.
We encourage interested readers to read Enders and Tofighi (2007, pp. 134-135, 138) for an in-depth
discussion on the topic.

Table 7. RCM Analysis of Dummy (0, 1) Variables from Factorial Survey: Step Two (Dataset 4)?

CPE process
Parameters
Step one inputs® Step two inputs®
Coefficient True value® From Model 6-4 8 B B¢
Mo (Boo, level-two intercept for -0.024
IntComply intercept o) 0.00 N/A (0.029)
m1 (B10, level-two intercept for Cel_Hi: 1.50 Cel_Hi: 1.497 1.000*** 0.372***
Celerity coefficient 1r1) Cel_Med: 0.75 Cel_Med: 0.753 (0.026)
M2 (B20, level-two intercept for Crt_Hi: 1.25 Crt_Hi: 1.259 1.000*** 0.311***
Certainty coefficient mm2)® Crt_Med: 0.625 Crt_Med: 0.646 (0.007)
3 (B30, level-two intercept for Sev_Hi: 2.00 Sev_Hi: 2.008 1.000*** 0.500***
Severity coefficient 1m3)® Sev_Med: 1.00 Sev_Med: 1.003 (0.004)
Direct and moderating effects of level-two RiskAverse on level-one coefficients m — m3
. 0.246***
Bo1 (1m0, IntComply-intercept) 0.25 (0.009)
. 0.269***
B11 (mm1, Celerity) (0.008)
B2+ (11, Certainty)
B3+ (m1, Severity)
Goodness of fit
Deviance NA 12,145
Parameters NA 10

@ N =10,800 at vignette level; N = 400 at individual level. We show unstandardized coefficient estimates and robust standard errors
in parentheses. Level-one variables are uncentered. Level-two variables are grand-mean centered.

Step two CPE models use these step one S values.

True values are the values used to generate Dataset 4, which is based on Dataset 1. True values equal dimension coefficients for
Celerity, Certainty, and Severity. They are multiplied by dimension-level manipulation effect (e.g., Hi or Med).

B values calculated using Equation 1. We took sx and sy, values from the HLM for Windows’ MDM template file. Sceierity, Scertainty,
Sseverity, and Sintcomply €qual 0.61, 0.51, 0.82, and 1.64, respectively.

¢ Level-one values are fixed.

***p<.001, ** p<.01, *p<.05.

o

o

2 The level-one 1 parameters in our multilevel models correspond to the B parameters from the OLS regression models in Tables 4
and 5.
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Centering Effects in Step One

In the next demonstration we compare the effects of uncentered and grand-mean centered level-2
variables on uncentered dummy (0, 1) variables in an RCM analyses of the extended Dataset 4 (Table 8,
Models 8-3 and 8-4, respectively).

Table 8. Centering Effects on RCM Analysis of Dummy (0, 1) Variables from Factorial Survey: Step One

(Dataset 4)2
Model 8-3¢ Model 8-4
Variables (coefficients) | True value®| Model 8-1 Model 8-2¢ (RiskAverse (RiskAverse
is uncentered) is GMC)
Level-one parameters m — 16 (corresponding level-two slope intercept Boo — Bs0)

o (Boo, level-two intercept 3.674** 0.702*** -0.024 0.702***

for IntComply intercept o) (.030) (.021) (.030) (.014)

m1 (810, level-two intercept 1.50 2.677*** 1.497** 2.677***

for Cel_Hi coefficient 1) | [1.50 x 1.00] (.029) (.039) (.015)

M2 (B20, level-two intercept 0.75 1.324*** 0.753*** 1.324**

for Cel_Med coefficient mm2)| [1.50 x .50] (.016) (.027) (.010)

3 (B30, level-two intercept 1.25 1.259*** 1.259*** 1.259***

for Crt_Hi coefficient m3) | [1.25 x 1.00] (.009) (.009) (.009)

4 (B40, level-two intercept 0.625 0.646*** 0.646*** 0.646***

for Crt_Med coefficient 1m4)| [1.25 x 0.50] (.009) (.009) (.009)

5 (Bs0, level-two intercept 2.00 2.008*** 2.008*** 2.008***

for Sev_Hi coefficient 75) | [2.00 x 1.00] (.009) (.009) (.009)

7o (Boo, leverwo itercebtl 1.0 1,003+ 1,003+ 1.003***

- 176) [2.00 x 0.50] (.009) (.009) (.009)
Direct and moderating effects of RiskAverse (Model 8-3) or RiskAverseecmc (Model 8-4)
on level-one coefficients mo — e
Bo1 (1m0, IntComply- 0.95 0.248*** 0.248***
intercept) ) (.009) (.009)
. 0.40 0.403*** 0.403***
B+ (m, Cel_Hi) [0.40 x 1.00] (.012) (.012)
0.20 0.195*** 0.195***
B21 (2, Cel_Med) | 1 40 0.50] (.009) (.009)
B31 (3, Crt_Hi)? 0.00
Ba1 (14, Crt_Med)? 0.00
Bs1 (s, Sev_Hi) 0.00
-0.005** -0.004*
d
Bs1 (1s, Sev_Med) 0.00 (.001) (.001)
Goodness of fit
Deviance NA 40,780.3 15,507.9 11,953.7 11,953.7
Number of parameters NA 3 9 17 17

A Deviance from previous 25,272 4% -3,554.2%** N/A

model

A Deviance f2rom Model 8- 3,554 2%+ -3,554.2%+

@ N =10,800 at vignette level; N = 400 at individual level. We show unstandardized coefficient estimates and robust standard errors
in parentheses. Level-one variables are uncentered. Model 8-4 is equivalent to Model 6-4.

b True values are the values used to generate Dataset 4, which was based on Dataset 1. We show calculations for true values (i.e.,
dimension coefficients for Celerity, Certainty, and Severity multiplied by dimension-level manipulation effect Hi or Med) in square
brackets.

¢ Values for Boo - Bos match those of unreported OLS regressions analysis.

4 Level-one coefficient is fixed.

***p<.001,* p<.01,*p<.05

Volume 42

10.17705/1

CAIS.04208

Paper 8

www.manaraa.com



Communications of the Association for Information Systems 197

Note that the “correct” results (i.e., those that match the coefficients used to generate Dataset 4; Appendix
D, Table D2) are displayed in Model 8-3, in which RiskAverse is uncentered. Cross-level effects in Model
8-3 are based on RiskAverse'’s intercept, where RiskAverse = 0 (i.e., there is no level-2 moderating
effect). The moderating variable in Model 8-4, on the other hand, is RiskAverseemc (i.€., in which the
RiskAverse value is centered on Uriskaverse, the grand mean of RiskAverse; thus, RiskAversecmc =
RiskAverse — Lriskaverse). Cross-level effects in Model 8-4 are based on RiskAversecwmc’s intercept, where
RiskAverseawc = 0.00 but its effect is equivalent to Uriskaverse = 2.925 (Appendix D, Table D4). Thus,
RiskAverse’s cross-level effects in Model 8-4 are greater than those in Model 8-3; so too are the values
and rankings of their subsequent products (i.e., their level-one  and level-two B coefficients). Therefore,
RiskAverse’s effects are commingled with those of Cel_Hi and Cel_Med in their respective m1 and m2
estimates, which a single-level step one regression cannot separate. This commingling will become
important later on when we examine centering effects in step two of the CPE process.

The question that now confronts the researcher is which values for 1 and m2 (i.e., the coefficients for
Cel_Hi, and Cel_Med, respectively, in Model 8-3 vs. 8-4) are “correct”. The “correctness” of the answer
depends on the research question because both results offer useful though different interpretations. If the
researcher is interested in ranking Celerity, Certainty, and Severity without RiskAverse’s moderating
influence on Celerity, then Model 8-3 is appropriate because the uncentered RiskAverse parcels out its
effects in the calculation of 1 and 2. On the other hand, if the researcher is interested in ranking
Celerity, Certainty, and Severity based on a subject who exhibits an “average” amount of RiskAverse—
and its corresponding moderating influence on Celerity—then Model 8-4 is appropriate because it
accommodates an “average” amount of RiskAverse via the grand-mean centered RiskAverseawc.

The difference between the two sets of coefficients can be explained mathematically through the formula
for calculating 1, the coefficient for Cel_Hi, in Models 8-3 and 8-4 (see Equation 2).

m1 = B10 + B11RiskAverse + 1, (2)

where B10 represents the “average value” of the 1 slope across level-two units; 811 represents the slope
between RiskAverse and 11, and r1 represents the level-two residuals.

™1 can be calculated as follows. Model 8-3 shows B10 = 1.497, 811 = 0.403, and the uncentered value of
RiskAverse = 0.00. We can further simplify Equation 2 by assuming rn = 0 (i.e., the mean level-two
residual value). Therefore:

1 = 1.497 + 0.403(0.000) - (0.000) 3)
M = 1.497 )

Thus, 1 equals 1.497 when RiskAverse = 0.000, which is within the 95 percent Cl of the parameter used
to generate Dataset 4 (i.e., 1.500). Similar calculations can be made for Model 8-4; however, Model 8-4 is
based on RiskAversesmc, which is centered on the “average” level of m1 (i.e., 2.925). Thus, to compare
the 11 values between Models 8-3 and 8-4, we will need to subtract the average level of RiskAverse in
Equation 5:

1 = 2.677 + 0.403(-2.925) - (0.000) (5)
m1 = 1.498 (6)

Equations 3-4 and 5-6 show Models 8-3 and 8-4 are equivalent (within rounding error). 1 in Equation 6
equals 1.498 when RiskAverse = 0.000 (i.e., RiskAverseavc = -2.925), which is within the 95 percent Cl of
the parameter used to generate Dataset 4 (i.e., 1.500). Equations 3-4 and 5-6 can be similarly applied to
M2, the coefficient for Cel_Med. The important point here is that the researcher must understand level-two
centering effects on the B; outcomes generated in step one of the CPE process and choose that model
that better fits the underlying research question. This decision is important because, as we demonstrate
next, it affects the ranking of individual-level factors in step two.
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44.2 Centering Effects in Step Two

Table 9 displays two types of centering effects in step two.

Table 9. Centering Effects on RCM Analyses of Factorial Surveys: Step Two (Dataset 4)?

Model True value® Model 9-1 Model 9-2
Level-one centering Uncentered
CPE process S_tep once Step two results S_tep once Step two results
inputs inputs
Level-two Ri§kAverse Uncentered Uncentered GMC GMC
centering
Coefficient Model 8-3 B B B¢ Model 8-4 8 B Be
Level-one intercept and independent variables (coefficients) mo — m3
o (Boo, level-two
intercept for -0.032 0.702***
IntComply intercept 0.00 N/A (0.032) N/A (0.013)
170)
. Cel_Hi: Cel_Hi:
i (Bro, leveltwo | CeLART901 4497 | 1000 | 0372 | 2677 1.000%* | 0.665**
coe?ficient ) y 075 ) Cel_Med: (0.026) Cel_Med: (0.005)
: 0.753 1.324
) Crt_Hi: Crt_Hi:
e (Bao, leveltwo | CILHE 1251 4250 | 1.0097 | 0.314% | 1259 10007 | 0311
coeﬁ)‘ficient m2)f g 0.625 . Cg_GAng: (0.018) Cr(')t_é\ﬁgd: (0.007)
. Sev_Hi: Sev_Hi:
o (Bao, levebtwo | Sev 2901 2008 | 1.003 | 0.502%* | 2.008 1.000%* | 0.500***
Coeﬁﬁciem g y o0 | Sev_Med: | (0.011) Sev_Med: (0.004)
: 1.003 1.003
Direct and moderating effects of level-two RiskAverse on level-one coefficients m — m3
Bo1 (10, IntComply- 0.25 0.248*** 0.250***
intercept) ' (0.010) (0.010)
. 0.269*** 0.151***
B11 (11, Celerity) (0.008) (0.004)
. -0.003 -0.003
B21 (12, Certainty) (0.006) (0.006)
. -0.001 -0.001
Bz (173, Severity) (0.004) (0.004)
Goodness of fit
Deviance NA 12,143 12,130
Parameters NA 19 19

@ N=10,800 at vignette level; N = 400 at individual level. We show unstandardized coefficient estimates and robust standard errors

in parentheses.

True values are the values used to generate Dataset 4, which was based on Dataset 1. True values equal dimension coefficients

for Celerity, Certainty, and Severity. They are multiplied by dimension-level manipulation effect (e.g., hi or med).

o

a

Scelerity and Sintcomply €qual 0.61 and 1.64, respectively.
¢ B values calculated using Equation 1. We took sx and s, values from the HLM for Windows’ MDM template file for Model 9-2.
Scelerity and Sintcompy €qual 1.09 and 1.64, respectively.

f

These step one B values are used as inputs to step two CPE models.
B values calculated using Equation 1. We took sx and sy values from the HLM for Windows’ MDM template file for Model 9-1.

Level-one values are fixed.
***p<.001,**p<.01,*p<.05.
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The first effect involves the way differences in the level-one  values in Model 8-3 versus Model 8-4 affect
calculations of the standardized B coefficients used to rank variables in CPE step two. Part of the

difference concerns which 7 values one chooses to calculate the standardized B coefficients. The second
effect involves the way differences in the centering of the level-two variable RiskAverse across those
models creates differences in the coefficients of the aggregate variables Celerity, Certainty, and Severity
(i.e., m, m2, and 3, respectively). A researcher must consider these different moderating influences when
recalibrating the dimension-level intervals in CPE of step two. We demonstrate these CPE calculations in
Models 9-1 and 9-2, which are based on the unstandardized m coefficients from Models 8-3 and 8-4,
respectively. We calculated the values in Table 9 using HLM for Windows version 7.01 using full
maximum likelihood estimation. HLM for Windows does not calculate standardized B values, so we
calculated them manually using Equation 1 and output in the HLM for Windows MDM files.

The most relevant statistics for the purposes of this demonstration are the values of the B coefficient for
the step two variable Celerity. Based on Equation 1, the value for B in Model 9-1 is B = (8 * sx)/sy = (1.000
* 0.61)/1.64 = 0.372; for Model 9-2, B = (1.000 * 1.09)/1.64 = 0.665. These calculations show that the
difference in the B values can be traced to their different sx values (i.e., 0.61 and 1.09 for Models 9-1 and
9-2, respectively). The differences in sx arise because of the way RiskAverse is centered in the two
models and the corresponding differences in moderation effects of RiskAverse on the Cel_Med and
Cel_Hi relationships with IntComply (i.e., 0.00 in Model 9-1; 2.925 in Model 9-2). These centering
differences create different step one 8 values across the two models (i.e., 0.753 for Cel_Med and 1.497
for Cel_Hi in Model 9-1; 1.324 for Cel_Med and 2.677 for Cel_Hi in Model 9-2). Since the ranges of the
Cel_Med and Cel_Hi B values are smaller in Model 9-1 than in Model 9-2, the standard deviations of the
aggregate Celerity variables in the CPE process (i.e., sx) differs correspondingly (i.e., 0.61 and 1.09 in
Models 9-1 and 9-2, respectively). The thrust of these differences in B calculations is that Celerity is
ranked lower than Severity in Model 9-1 but higher than Severity in Model 9-2. Again, the different results
arise due to the difference of the nature of the targeted reference subject. In Model 9-1, the reference
subject has a RiskAverse value of 0.00, while the reference subject in Model 9-2 is a subject with an
“average” level of RiskAverse equal to 2.925.

As in Models 8-3 versus 8-4, the researcher must now address the question of which ranking (i.e., Model
9-1 vs. 9-2) is “correct”? Again, it depends on the research question. If the researcher is interested in
ranking Celerity, Certainty, and Severity without RiskAverse’s moderating influence on Celerity, then
Model 9-1 is appropriate if the 8 inputs from Model 8-3 are used. On the other hand, if the researcher is
interested in ranking Celerity, Certainty, and Severity based on the “average” subject (i.e., with an
“average” amount of RiskAverse’s moderating influence on Celerity factored in), then then Model 9-2 is
appropriate if the B inputs from Model 8-4 are used. Model 9-2 offers results that are more consistent for
those subjects with an “average” level of RiskAverse. Again, the important point here is that the
researcher must understand the effects of centering on the ranking of individual-level factors in CPE.

A second effect concerns the change in values for the IntComply-intercepts (1o0) across Models 9-1 and
9-2. The mo for Model 9-1, which uses uncentered RiskAverse, equals -0.032, while the o for Model 9-2,
which uses RiskAversecmc, equals 0.702. The increase from -0.032 in Model 9-1 to 0.702, which equals
0.734, arises due to the equivalency of the moderating effects of RiskAversesmc = 0.00 and Uriskaverse =
2.925 in Model 9-2 (Equations 7-8):

Bo1* RiskAverseawc = Bo1* URiskaverse (7)

Bo1 * Uriskaverse = 0.250 * 2.925 = 0.731 = 0.734 (8)

A third effect concerns the change in values for the §11 coefficients from Model 9-1 to Model 9-2 (i.e.,
0.269 and 0.151, respectively). At first glance, it seems incongruous that the 11 coefficient would
decrease from Models 9-1 to 9-2 given that the value of RiskAverse increases from 0.00 in the uncentered
Model 9-1 to 2.925 in the grand-mean centered Model 9-2. However, one must remember that the Cel Hi
and Cel_Med inputs increase across the two models (e.g., Cel_Hi increases from 1.497 to 2.677). These
latter increases produce an equalizing effect, which we can demonstrate by multiplying the Cel_Hi and
Cel_Med inputs by their corresponding RiskAverse values. For example, the product of the Cel_Hi input
and 11 in Model 9-1 equals 1.497 x 0.269 = 0.403, which is roughly equal to that of Model 9-2 (i.e., 2.677
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x 0.151 = 0.404). Thus, the ultimate effect on the dependent variable IntComply is equivalent across the
two models regardless of whether the model is uncentered or grand-mean centered.

It is important that centering choices be applied consistently across steps one and two. We describe some
effects of inconsistent centering in step two of the CPE procedure in Appendix F.

4.4.3 Other Centering Points

Centering at the grand mean or at the zero-point uncentered data are not the only two points at which
data can be centered. Recentering factorial survey data is useful when 0.00 is outside the data range
(e.g., in a 1-5 Likert-type scale or in respondents’ age ranges). In such circumstances, the data should be
recoded so that the intercept will be placed at a meaningful point in the data range. For example, one
could rescale data from a 1-5 Likert-type scale on a 0-4 range (e.g., each “1” is recoded as a “0” and each
“5” is recoded as a “4”). One could similarly rescale respondents’ ages (e.g., if the minimum age in the
sample were 22 years, then one would reduce each age value by 22). Rescaling would make the
regression and RCM intercepts meaningful because they would be placed in the data range at the lowest
point (i.e., at the 0™ percentile).

Researchers can also demonstrate how the relationships between the level-one dependent and
independent variables vary across differing values of the level-two variable (e.g., positive, significant
moderation effects at high levels of the level-two variable, but non-significant moderating effects at low
levels of the level-two variable). Calculating and plotting the slopes of such changes is particularly useful
in presentations and publications because they visually demonstrate how slopes change across different
values of the level-two variable. Hox (1995, 2002) recommends the 25th, 50th (median), and 75th
percentiles as recentering points.

5 Discussion

Our tutorial makes several contributions regarding factor ranking in factorial survey analyses. First, we
demonstrate and explicate the usefulness of multilevel modeling. We discuss the value of RCM in
estimating variations in rates of change in vignette-level coefficients across individuals. We show that
these estimates are more accurate than those of OLS regression, the method of choice for most
applications of Rossi and Anderson’s (1982) two-step method. We also explain how multilevel modeling
accounts for these effects in nested, hierarchical data (e.g., vignettes nested within individuals). We hope
our demonstrations promote wider usage of multilevel modeling in factorial survey analysis.

Second, we describe the effects of centering decisions in multilevel analysis. Our demonstration is
particularly helpful given the plethora of recommendations for grand-mean centered over uncentered “raw
metric” data (e.g., Enders & Tofighi 2007; Hofmann & Gavin 1998; Raudenbush & Bryk, 2002). We agree
that grand-mean centering does have several computational and interpretive advantages and that one
may prefer it over uncentered data in many circumstances. Grand-mean and group-mean centering level-
one variables may be particularly useful for those methods that incorporate continuous level-one
independent variables (e.g., policy capturing). Both uncentered and grand-mean centered level-two
variables are useful, but their use must correspond to one’s interests to avoid compromising the validity
and/or interpretability of one’s work. Researchers should, therefore, understand how centering affects the
estimation, interpretation, and ranking of vignette dimension coefficients.

Third, we demonstrate the adverse effects of unequal dimension intervals and manipulation effect sizes
on the ranking of dummy (0, 1) variables in CPE. Such rankings may be unreliable when unequal
manipulation effect sizes across the survey’s dimensions produce unequal effects on Y that can be
confounded with the effects of the dimensions in the factorial design. Of course, that does not mean one
should necessarily avoid qualitative statements. Indeed, they can be useful when their meanings are
clear, unambiguous, realistic, and respondents can easily grasp them. However, achieving these goals
can be challenging. Researchers should justify their dimension manipulation choices by relying on current
practice, economic costs, or other organizational factors to validate their decisions (Dallal, 2001). They
can frame choices in a context of practice (e.g., how a fixed set of resources can best be deployed to
reach a targeted goal given a fixed budget or how an organization should invest in various ethical
strategies to optimally increase compliance). Input from pilot tests and knowledgeable, impartial third-party
experts can help mitigate unrealistic dimension manipulation effect sizes. Such practical foundations can
increase the validity of the research design.
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Researchers new to multilevel methods typically face challenges in interpreting the meaning of the
different statistics. Given that most of our examples and discussion revolve around the effects on various
coefficients (e.g., the ranking of standardized B coefficients in Table 9), the best place to start may be with
the traditional meaning of a regression coefficient. Cohen and Cohen (1983, p. 42) state a regression
coefficient “represents the rate of change in Y units per X unit” (i.e., the dependent and independent
variables, respectively;). One can similarly apply this definition in random coefficients modeling (e.g., the
level-one parameters are the outcomes of level-two regression equations).

Our results demonstrate how multilevel analyses and techniques allow researchers to model and test
nuances in the way an individual’s characteristics influence relationships between factors represented in
vignettes. In our demonstrations, we examine information security-related examples (e.g., the extent to
which an individual’s aversion to risk affects the relationships between their attitudes about punishment
and their intended compliance behaviors). Future research could investigate other IS topics as well, some
of which we suggest in Section 5.2. Researchers could also apply our results to other vignette-oriented
techniques such as policy capturing, which uses quantitative rather than qualitative factors. Table 10
summarizes our recommendations.

Table 10. Summary of Recommendations

Recommendation Justification

The participants choose the values of independent variables in most survey analyses,
but the values of those variables in factorial survey analyses are forced on them. As a
result, scale ranges in traditional survey analyses depend on the choices of the
participant pool, while those in factorial survey analysis depend on the manipulation
choices of the research designer(s). Therefore, researchers should apply current
practices, economic costs, or other organizational or environment factors to design
valid, realistic alternatives for their sample. Manipulations that are too wide may include
options that are rare or infeasible, while those that are too narrow may limit the
independent variable’s effect size. Qualitative statements should be pilot tested for
manipulation effect size and not just clarity and readability.

Use current practice,
economic costs, and/or
other relevant factors when
designing dimension
manipulation effect sizes.
Pilot test values for
manipulation effect sizes.
Use quantified variables
when appropriate.

Dimension importance is determined by the underlying organizational, environmental, or
Frame dimension rankings | economic factors, which CPE does not account for. When discussing dimension

in terms of applicable importance, consider recommendations such as how and/or where resources can be
research or practitioner best deployed to reach a targeted goal (e.g., given a fixed budget, to what extent should
goals. we invest in various sanction severity, certainty, and celerity strategies to most

economically increase compliance?).

Center level-two variables
consistently across steps
one and two of the CPE

Mixing centering methods for a level-two variable across CPE steps (e.g., grand-mean
centering a level-two variable in step two that has been left uncentered in step one)
produces statistical results that can lead to erroneous conclusions (Appendix F).

process.
Grand-mean center Grand-mean centering level-two variables produces level-one intercepts that are
individual-level (i.e., centered on the average characteristics of individuals in the sample pool, which often

level-two) variables if one provides statistics that are more easily interpreted because they refer to an individual
seeks to estimate level-one |with an average levels of given characteristics in the sample pool rather than an atypical

coefficients around the individual who scores zero on all measures. Grand-mean centering is particularly useful
average level of the when the zero value of a level-two variable is not meaningful or outside the range of
level-two variable. values in the sample pool (e.g., an age of 0).

5.1 Limitations

Like other research, our study has limitations. First, we use normally distributed datasets. Future research
should explore the effects of non-normally distributed data. Censored data may be a particularly fruitful
subject of research. Second, we use simulated data. In particular, our analyses assume that participants
can evaluate all 27 vignettes without fatigue or cognitive biases. We caution readers that such
assumptions may be unrealistic with real test subjects. Cognitive biases may be particularly interesting
because of their strong association with decision making and information systems use.

5.2 Future Research

Several opportunities for future research remain. First, future IS research that uses multilevel factorial
surveys could explore the value of rank-ordered beta weights. Such rankings have been used in a variety
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of non-IS research domains and can be extended to IS. For example, one could extend Shlay et al.’s
(2005) use of beta weights for ranking predictors of summative judgments of childcare quality to explore
judgments of IS quality. Harris and Weistroffer (2009) describe several relevant predictors of system
success judgments, some of which one could conceptualize as individual-level factors (e.g., user
expertise and task competence) and others as vignette-level factors (e.g., user participation and
involvement). One could make a second extension from Hunter and McClelland’s (1991) ranking of
predictors of perceived seriousness of student-student sexual harassment to similar judgments about the
perceived seriousness of IS-related behaviors (e.g., cyberloafing, Lim & Teo, 2005; IS consultant
wrongdoing, Ayers & Kaplan, 2005). One could also apply perceived seriousness to IS education,
particularly in regards to perceived seriousness of academic dishonesty offenses. Using Broeckelman-
Post’s (2008) examination of academic dishonesty as a guide, researchers could design multilevel studies
around individual-level predictors such as a student’s understanding of academic expectations, domestic
versus international status, and whether students see cheating as a way to get ahead or as a way “for
staying on the right side of the growing wage gap between the ‘haves’ and the ‘have-nots™ (Brockelman-
Post, 2008, p. 206, referencing Callahan, 2004). Vignette-level predictors could include the number of
times an instructor has discussed academic dishonesty policies and the amount of feedback an instructor
has given about source citation. One could make a third extension from Alves’ (1982) rankings of
predictors of distributive justice judgments. Specifically, one could extend this line of research to
investigations of distributive justice judgments in knowledge sharing (e.g., Fang & Chiu, 2010), IS security
policy compliance (e.g., Xue, Liang, & Wu, 2011), or other IS-related concerns.

Multilevel modeling offers a sound methodological tool for analyzing theoretically important relationships
that involve individual-level factors in factorial surveys. However, past factorial survey research in the IS
domain has limited its use primarily to controlling for the effects of demographic variables such as age and
gender (e.g., Guo et al, 2011; Vance et al., 2015). Expanding the scope of multilevel modeling beyond this
limited role can facilitate IS researchers’ efforts to explore relationships involving other, more theoretically
relevant individual-level factors such as perceptions of supervisors’ and coworkers attitudes and behaviors
(Webster & Trevino, 1995), a subject’s overall job characteristics (Van de Ven & Ferry, 1980, cited in
Webster & Trevino, 1995), or perceptions about an organization’s social media use policy (Trinkle et al,
2014). Moreover, one can model such attitudes and perceptions more effectively as continuous direct or
moderating cross-level variables than as median-split groups in structural equation modeling (e.g., Moores
& Chang, 2006). The entrepreneurship literature may be particularly informative in this regard. For
example, several individual-level factors studied in the entrepreneurship literature (e.g., trust, Patzelt &
Shepard, 2008; self-efficacy, Mitchell & Shepherd, 2010) have also been studied in IS research (e.g.,
Gefen, Karahanna, & Straub, 2003; Agarwal, Sambamurthy, & Stair, 2000). Future IS research should
take advantage of these opportunities.

Future research could also address how to incorporate mediating psychological states (e.g., O’Keefe,
2003) in factorial survey analyses (e.g., in Brunswik’'s (1952) lens model of behavior; Hammond, 1966;
Dalal, Diab, Balzer, & Doherty, 2010). Such research could extend factorial surveys by including
psychological states in this methodology.

6 Conclusion

Our analyses of manipulation, multilevel, and centering effects indicate that researchers should
thoughtfully plan for and carefully execute coding proportional to effect procedures to rank dimensions by
importance in factorial survey analysis. Researchers should understand how multilevel modeling and
centering affect and improve CPE factor rankings and ensure that their methodological decisions align
with their research goals.

Qualitative statements may elicit manipulation effects that are too pronounced or that may include rare or
infeasible options. On the other hand, qualitative statements that are too limited may fail to elicit realistic
responses in the dependent variable. As such, researchers should base their qualitative vignette
dimensions with relevant, realistic organizational examples. Our results indicate that quantified statements
should replace qualitative statements and their dummy (0, 1) variables when possible.

We hope our demonstrations and recommendations increase the validity of factorial survey research and
contribute to best practices for future research.
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Appendix A: An Example of a Factorial Survey Vignette

Factorial surveys typically embed the antecedent variables as statements in vignettes (or scenarios) that
are displayed to the respondent. Vignettes often state the behavior of a character under orthogonally
manipulated conditions; the respondents are asked the degree to which they agree that they would act as
the vignette character acted in the same situation. One recent example (from Johnston et al., 2016, p.
249) appears below (in italics). We take the bold sentences from the set of manipulations below. Note the
action in the penultimate sentence—the respondent will agree or disagree that they would do the same
(as the dependent variable).

Sample vignette (from a set of vignette versions)

Joe has just collected sensitive customer data for his company, and he wants to take that data home to
continue his work. He knows his company requires that he request a password to be issued and applied
to all data before taking it out of the office on a USB drive so that it cannot be accessed by an
unauthorized individual. Joe has completed the password request procedure before, so he is confident
he can do it again easily. Joe believes that without the password, it is not likely that unauthorized
people will see the data, but if they do, nothing bad will happen. Joe believes that the password
procedure is effective and prevents unauthorized people from seeing the data. Regardless, the
password procedure takes several minutes, and he needs to leave now, so he skips the procedure. Joe
believes his chances of being caught are low, but if caught, the punishment would be minimal.

Constructs manipulated in the vignettes

Below are the statements associated with the various levels of each of the situational factors manipulated
in the vignettes. The levels are shown in parentheses.

Self-efficacy levels
o Joe has completed the password request procedure before, but he is not confident he can do it
again easily (low)
o Joe has completed the password request procedure before, so he is confident he can do it
again easily (high)
Threat vulnerability and Severity
e Joe believes that, without the password, it is not likely that unauthorized people will see the
data, but if they do, nothing bad will happen (low/low)

e Joe believes that, without the password, it is not likely that unauthorized people will see the
data, but if they do, they may alter or misuse it (low/high)

e Joe believes that, without the password, it is likely that unauthorized people will see the data,
but if they do, nothing bad will happen (high/low)

e Joe believes that, without the password, it is likely that unauthorized people will see the data
and if they do, they may alter or misuse it (high/high)

Sanction Certainty and Severity

o Joe believes his chances of being caught are low, but if caught, the punishment would be
minimal (low/low)

e Joe believes his chances of being caught are low, but if caught, the punishment would be
severe (low/high)

e Joe believes his chances of being caught are high, and if caught, the punishment would be
minimal (high/low)

e Joe believes his chances of being caught are high, and if caught, the punishment would be
severe (high/high)
Response efficacy
e Joe believes that the password procedure is not effective and does not prevent unauthorized
people from seeing the data (low)

e Joe believes that the password procedure is effective and prevents unauthorized people from
seeing the data (high).
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Appendix B: Generation of Datasets 1-3

The effect sizes of the dimension levels on the dependent variable IntComply are based on two factors.
The first is a dummy (0, 1) variable that represents the presence of the dimension level's corresponding
statement in the vignette. The second represents the magnitude of the dimension level effect. Our design
follows a traditional format “where level implies amount or magnitude” (Easton & McColl, 1997). We use
three dimension levels for Celerity, Certainty, and Severity to ensure each dimension is over-identified and
linear relationships are assessable. We set the IntComply-intercept Bo to zero. Thus, the equations for
dummy (0O, 1) variables for the Celerity dimension are as follows:

Cel_Lowsiv = Cel_LowPresiv * (Cel_LowMagiiv + ei) (B1)
Cel_Med1iv = Cel_MedPresiiv * (cel_MedMagiiv + ew) (B2)
Cel_Hiiiv = Cel_HiPresiiv * (cel_HiMag1i + ew), (B3)

where Cel_LowPres, Cel_MedPres, and Cel_HiPres represent the presence of a low-, medium-, or high-
level statement, respectively, in a vignette; Cel LowMag, cel MedMag, and Cel HiMag represent the
magnitude of the statement effect size regarding low, medium, and high dimension levels, respectively;
and e, represents residuals.

We generated Dataset 1 so that the manipulation effect sizes of the first independent variable Celerity
ranged from a low value of 0.00 to a high value of 1.00 with a mid-range value of 0.50. We set the Celerity
coefficient’s association with InfComply to 1.50. We generated Dataset 2 so that the manipulation effect
sizes of the Celerity ranged from a low level of 0.00 to a high level of 3.00 with a mid-range level of 1.50.
To make the interval scale in Dataset 2 equivalent to that in Dataset 1, we set the Celerity coefficient to
0.50 for all three levels (e.g., the Cel_Hi * (81 coefficient in Dataset 1 equals 1.00 * 1.50 = 1.50; for Dataset
2, 3.00 * 0.50 = 1.50). We generated Dataset 3 so that the manipulation effect sizes of Celerity ranged
across a greater span than that of Dataset 1 (i.e., at a low level of 0.00, a mid-range level of 1.50, and a
high level of 3.00). We kept the Celerity coefficient at 1.50 for both datasets to demonstrate the effects of
the increase in dimension interval size.

Figure B1 displays the R code we used to generate step one data for Datasets 1-3 for Table 2.

# R code to generate step one data for Datasets 1-3 in Table 2.
# Datasets will be stored in the working directory in a new folder, “FSM_Datasets”.
#
# NOTE: Dummy variables in the manuscript (e.g., Cel_Low, Cel_Med, and Cel_Hi)
# correspond to variables with the prefix “dum” in this code (e.g., dumCelLow,
# dumCelMed, and dumCelHi, respectively).
#
# Which dataset do you want to generate? Modify the next line accordingly.
datasetNumber <-1  # Change value to 1, 2, or 3.
#
# Celerity constants and beta coefficients vary across Datasets 1-3. Values used depend on Line 4.
if(datasetNumber == 1) {

celCoeff <- 1.50  # Celerity beta coefficient, Dataset 1.

celHi<-1.0 # Relative value for high Celerity level, Dataset 1.
celMed <- 0.5 # Relative value for medium Celerity level, Dataset 1.
celLow <- 0.0 # Relative value for low Celerity level, Dataset 1.

} else if(datasetNumber == 2) {
celCoeff <- 0.50  # Celerity beta coefficient, Dataset 2.
celHi <- 3.0 # Relative value for high Celerity level, Dataset 2.
celMed <- 1.5 # Relative value for medium Celerity level, Dataset 2.
celLow <- 0.0 # Relative value for low Celerity level, Dataset 2.

} else if(datasetNumber == 3) {
celCoeff <- 1.50  # Celerity beta coefficient, Datase 3
celHi <- 3.0 # Relative value for high Celerity level, Dataset 3.
celMed <- 1.5 # Relative value for medium Celerity level, Dataset 3.
celLow <- 0.0 # Relative value for low Celerity level, Dataset 3.
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} elsef
cat("DatasetNumber in Line 4 is incorrect. Please enter 1, 2, or 3.")
quit()

# Certainty and Severity beta coefficients and constants do not change
# across Datasets 1-3.
crtCoeff <- 1.25  # Certainty coefficient, Datasets 1-3.

crtHi <- 1.0 # High value for Certainty variable, Datasets 1-3.
crtMed <- 0.5 # Medium value for Certainty variable, Datasets 1-3.
crtLow <- 0.0 # Low value for Certainty variable, Datasets 1-3.
sevCoeff <-2.00  # Severity coefficient, Datasets 1-3.

sevHi <- 1.0 # High value for Severity variable, Datasets 1-3.
sevMed <- 0.5 # Medium value for Severity variable, Datasets 1-3.
sevLow <- 0.0 # Low value for Severity variable, Datasets 1-3.

#

# Parameters used to generate error values, Datasets 1-3. These do not change
# across Datasets 1-3.
r sd<-04 # Standard deviation for level-1 residual.

# Generate vignette ID numbers (vignID).
vignID <- seq(from = 1001, to = 11800, by = 1)
#

# Generate subject count numbers (vnCount).
for(i in 1:400){

if(i <= 1) {
vnCount <- seq(from = 1, to = 27, by = 1)
} else {
vnCount <- ¢(vnCount, seq(from = 1, to = 27, by = 1))
}
}
#

# Generate subject (individuals) ID numbers (indivID).
indiviD <- c(101, 101)
for(i in 3:27) {

indivID <- c(indiviD, 101)

}
for(i in 102:500) {

for(j in 1:27) {

indiviD <- c(indivID, i)

}
}
#
# Calculate residuals.
r <- rnorm(10801, mean=0, sd = r_sd)
#
# The following for loop generates the dummy variables that represent which
# Celerity, Certainty, and Severity statements (i.e., High, Medium, or Low)
# are incorporated in each vignette.
# Initialize arrays in loop; these initial rows will be deleted at end of
# the for loops (Lines 150-171).
rec_count <-0
rec_countVector <-0
dumCelHi <-0
dumCelMed <- 0
dumCelLow <- 0
dumCrtHi <-0
dumCrtMed <- 0
dumCrtLow <- 0
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dumSevHi <-0
dumSevMed <- 0
dumSevLow <- 0
for(m in 1:400) {
for(i in 1:3) {
for(jin 1:3) {
for(k in 1:3) {
rec_count <- rec_count + 1
rec_countVector <- c(rec_countVector, rec_count)
if(i == 1) {
dumCelHi <- ¢c(dumCelHi, 1)
dumCelMed <- c(dumCelMed, 0)
dumcCelLow <- ¢(dumCelLow, 0)
}else if(i == 2) {
dumCelHi <- ¢c(dumCelHi, 0)
dumCelMed <- c(dumCelMed, 1)
dumCelLow <- ¢(dumCelLow, 0)
}else {
dumCelHi <- ¢c(dumCelHi, 0)
dumCelMed <- c(dumCelMed, 0)
dumcCelLow <- ¢(dumCelLow, 1)

}
if(j == 1) {
dumCrtHi <- ¢(dumCrtHi, 1)
dumCrtMed <- ¢(dumCrtMed, 0)
dumCrtLow <- c(dumCrtLow, 0)
}elseif(j == 2) {
dumCrtHi <- ¢(dumCrtHi, 0)
dumCrtMed <- c(dumCrtMed, 1)
dumCrtLow <- ¢(dumCrtLow, 0)
}else {
dumCrtHi <- c(dumCrtHi, 0)
dumCrtMed <- ¢c(dumCrtMed, 0)
dumCrtLow <- c(dumCrtLow, 1)

}
if(k == 1) {
dumSevHi <- c(dumSevHi, 1)
dumSevMed <- c(dumSevMed, 0)
dumSevLow <- c(dumSevLow, 0)
} else if(k == 2) {
dumSevHi <- c(dumSevHi, 0)
dumSevMed <- c(dumSevMed, 1)
dumSevLow <- ¢c(dumSevLow, 0)
}else {
dumSevHi <- c(dumSevHi, 0)
dumSevMed <- c(dumSevMed, 0)
dumSevLow <- c(dumSevLow, 1)

# Calculate Marginal Effect (AME) of each dimension level.
celHIME <- (dumCelHi * celHi * celCoeff)

celMedME <- (dumCelMed * celMed * celCoeff)

celLowME <- (dumCelLow * celLow * celCoeff)

crtHIME <- (dumCrtHi * crtHi * crtCoeff)

crtMedME <- (dumCrtMed * crtMed * crtCoeff)

crtLowME <- (dumCrtLow * crtLow * crtCoeff)

sevHIME <- (dumSevHi * sevHi * sevCoeff)

sevMedME <- (dumSevMed * sevMed * sevCoeff)
sevLowME <- (dumSevLow * sevLow * sevCoeff)
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# Calculate sum of marginal effect (sumMargEffect, the sum of corresponding AMEs)
sumMargEffect <- celHIME + celMedME + celLowME +

crtHiME + crtMedME + crtLowME +

sevHIME + sevMedME + sevLowME

}
}
}

# Add total effect size (sumMargEffect) and residual (r) to compute dependent variable, intComply.
intComply <- sumMargEffect + r

#

# Remove first row of "0" values from above vectors (many initialized in Lines 72-82).
rec_countVector <- rec_countVector[-1]
dumCelHi <- dumCelHi[-1]

dumCelMed <- dumCelMed[-1]
dumCelLow <- dumCelLow][-1]
dumCrtHi <- dumCrtHi[-1]

dumCrtMed <- dumCrtMed[-1]
dumCrtLow <- dumCrtLow[-1]
dumSevHi <- dumSevHi[-1]
dumSevMed <- dumSevMed[-1]
dumSevLow <- dumSevLow][-1]
celHiME <- celHIME[-1]

celMedME <- celMedME[-1]

celLowME <- celLowME[-1]

crtHiIME <- crtHiIME[-1]

crtMedME <- crtMedME[-1]

crtLowME <- crtLowME[-1]

sevHIME <- sevHIME[-1]

sevMedME <- sevMedME[-1]
sevLowME <- sevLowME[-1]
sumMargEffect <- sumMargEffect[-1]
r<-r[-1]

intComply <- intComply[-1]

#

# Create csv file of variable values.
fileContents <- cbind(vignID, vnCount, indivID)
#

# Dependent variable

fileContents <- cbind(fileContents, intComply)

#

# Dummy variables

fileContents <- cbind(fileContents, dumCelHi)
fileContents <- cbind(fileContents, dumCelMed)
fileContents <- cbind(fileContents, dumCelLow)
fileContents <- cbind(fileContents, dumCrtHi)
fileContents <- cbind(fileContents, dumCrtMed)
fileContents <- cbind(fileContents, dumCrtLow)
fileContents <- cbind(fileContents, dumSevHi)
fileContents <- cbind(fileContents, dumSevMed)
fileContents <- cbind(fileContents, dumSevLow)
#

# Manipulation and marginal effects
fileContents <- cbind(fileContents, celHi)
fileContents <- cbind(fileContents, celMed)
fileContents <- cbind(fileContents, celLow)
fileContents <- cbind(fileContents, celCoeff)
fileContents <- cbind(fileContents, celHIME)
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fileContents <- cbind(fileContents, celMedME)

fileContents <- cbind(fileContents, celLowME)

#

fileContents <- cbind(fileContents, crtHi)

fileContents <- cbind(fileContents, crtMed)

fileContents <- cbind(fileContents, crtLow)

fileContents <- cbind(fileContents, crtCoeff)

fileContents <- cbind(fileContents, crtHiME)

fileContents <- cbind(fileContents, crtMedME)

fileContents <- cbind(fileContents, crtLowME)

#

fileContents <- cbind(fileContents, sevHi)

fileContents <- cbind(fileContents, sevMed)

fileContents <- cbind(fileContents, sevLow)

fileContents <- cbind(fileContents, sevCoeff)

fileContents <- cbind(fileContents, sevHIME)

fileContents <- cbind(fileContents, sevMedME)

fileContents <- cbind(fileContents, sevLowME)

#

# Sum of marginal effects (used to check calculations)

fileContents <- cbind(fileContents, sumMargEffect)

#

# Residual

fileContents <- cbind(fileContents, r)

#

# Create step one dataset output file.

# Add “FSM_Datasets” folder to working directory if necessary.

if(file.exists(file.path(getwd(),"FSM_Datasets"))) {
# If the FSM_Datasets folder exists, do nothing.

}else {
dir.create(file.path(getwd(),"FSM_Datasets"))

}
if(datasetNumber == 1) {
write.csv(fileContents, file="FSM_Datasets/R_FigureB1_Dataset1_Step1.csv",
row.names = FALSE)
} else if(datasetNumber == 2) {
write.csv(fileContents, file="FSM_Datasets/R_FigureB1_Dataset2_Step1.csv",
row.names = FALSE)
} else if(datasetNumber == 3) {
write.csv(fileContents, file="FSM_Datasets/R_FigureB1_Dataset3_Step1.csv",
row.names = FALSE)

}else {
cat("DatasetNumber in Line 4 is incorrect. Please enter 1, 2, or 3.")
quit()
}
Figure B1. R Code to Generate Datasets 1-3, Step One, Table 2
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Figure B2 displays the SPSS code we used to perform the OLS regression analysis for step one in Table
2.

REGRESSION
/MISSING LISTWISE
/STATISTICS COEFF OUTS R ANOVA CHANGE
/CRITERIA=PIN(.05) POUT(.10)
/NOORIGIN
/DEPENDENT intComply
/METHOD=ENTER dumCelHi dumCelMed dumCrtHi dumCrtMed dumSevHi dumSevMed.

Figure B2. SPSS Code for First OLS Regression, Datasets 1-3
Figure B3 displays the R code we used to generate step two (CPE) data for Datasets 1-3 in Table 3.

# R code for Table 3, Models 3-1, 3-2, and 3-3.
# Datasets will be stored in the working directory in a new folder, “FSM_Datasets”.
#
# Which model do you wish to use apply the step two (CPE) method?
# Be sure to enter the step one beta coefficients in lines 24 to 29 below.
# Enter:
# "1" for Model 3-1
# "2" for Model 3-2
# "3" for Model 3-3
#
modelNum <- 1 # Model 3-1 is the default choice. Change modelNum as needed.
#
if (modelNum == 1) {
data <- read.csv(file = "FSM_Datasets/R_FigureB1_Dataset1_Step1.csv")

} else if(modelNum == 2) {

data <- read.csv(file = "FSM_Datasets/R_FigureB1_Dataset2_Step1.csv")
}else {

data <- read.csv(file = "FSM_Datasets/R_FigureB1_Dataset3_Step1.csv")
}
#

# Enter unstandardized beta coefficients for the dummy variables from the SPSS
# OLS regression in Table 2.

#

Celerity_High <- 4.509

Celerity_Med <- 2.265

Certainty_High <- 1.254

Certainty_Med <- 0.631

Severity _High <- 1.991

Severity Med <- 0.987

#

# Generate aggregate variables.

Celerity <- (data[5] * Celerity_High) + (data[6] * Celerity_Med)
Certainty <- (data[8] * Certainty_High) + (data[9] * Certainty_Med)
Severity <- (data[11] * Severity_High) + (data[12] * Severity_Med)
#

# Create csv file that mimics Table10Data.
fileContents <- cbind(data[,1:13], Celerity)
fileContents <- cbind(fileContents, Certainty)
fileContents <- cbind(fileContents, Severity)
colnames(fileContents) <- c("vignID", "count”, "indivID", "IntComply",
"Cel_Hi", "Cel_Med", "Cel_Low",
"Crt_Hi", "Crt_Med", "Crt_Low",
"Sev_Hi", "Sev_Med", "Sev_Low",
"Celerity", "Certainty", "Severity")
# Create csv output file.
# Add "FSM_Datasets" folder to working directory if necessary.
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if(file.exists(file.path(getwd(),"FSM_Datasets"))) {
# If the FSM_Datasets folder exists, do nothing.

}else {
dir.create(file.path(getwd(),"FSM_Datasets"))

}
if (modelNum == 1) {
write.csv(fileContents, file="FSM_Datasets/R_Model_3-1_Step2CPE.csv",
row.names = FALSE)
} else if(modelNum == 2) {
write.csv(fileContents, file="FSM_Datasets/R_Model_3-2_Step2CPE.csv",
row.names = FALSE)
}else {
write.csv(fileContents, file="FSM_Datasets/R_Model_3-3_ Step2CPE.csv",
row.names = FALSE)

Figure B3. R Code for CPE Step Two for Datasets 1-4

Table B1 displays the descriptive statistics of dimension levels from Datasets 1-3 (e.g., Cel_Hi, Cel_Med,
and Cel _Low). Table B2 displays the descriptive statistics of the dimensions from Datasets 1-3 (i.e.,
Celerity, Certainty, and Severity).

Table B1. Descriptive Statistics of Dimension Levels from Datasets 1-3 (Step One)

Variable ‘ Mean (st. err.) ‘ St. Dev. Skewness (st. err.) ‘ Kurtosis (st. err.) ‘ Min. ‘ Max.
Dataset 1
IntComply 2.370 (0.012) 1.215 0.000 (0.024) -0.437 (0.047) -1.11 5.76
Cel_Hi 0.333 (0.005) 0.471 0.707 (0.024) -1.500 (0.047) 0 1
Cel_Med 0.333 (0.005) 0.471 0.707 (0.024) -1.500 (0.047) 0 1
Cel_Low 0.333 (0.005) 0.471 0.707 (0.024) -1.500 (0.047) 0 1
Crt_Hi 0.333 (0.005) 0.471 0.707 (0.024) -1.500 (0.047) 0 1
Crt_Med 0.333 (0.005) 0.471 0.707 (0.024) -1.500 (0.047) 0 1
Crt_Low 0.333 (0.005) 0.471 0.707 (0.024) -1.500 (0.047) 0 1
Sev_Hi 0.333 (0.005) 0.471 0.707 (0.024) -1.500 (0.047) 0 1
Sev_Med 0.333 (0.005) 0.471 0.707 (0.024) -1.500 (0.047) 0 1
Sev_Low 0.333 (0.005) 0.471 0.707 (0.024) -1.500 (0.047) 0 1
r -0.005 (0.004) 0.403 0.004 (0.024) -0.017 (0.047) -1.62 1.73
Dataset 2
IntComply 2.375 (0.012) 1.209 0.007 (0.024) -0.478 (0.047) -1.29 | 6.04
Cel_Hi 0.333 (0.005) 0.471 0.707 (0.024) -1.500 (0.047) 0 1
Cel_Med 0.333 (0.005) 0.471 0.707 (0.024) -1.500 (0.047) 0 1
Cel_Low 0.333 (0.005) 0.471 0.707 (0.024) -1.500 (0.047) 0 1
Crt_Hi 0.333 (0.005) 0.471 0.707 (0.024) -1.500 (0.047) 0 1
Crt_Med 0.333 (0.005) 0.471 0.707 (0.024) -1.500 (0.047) 0 1
Crt_Low 0.333 (0.005) 0.471 0.707 (0.024) -1.500 (0.047) 0 1
Sev_Hi 0.333 (0.005) 0.471 0.707 (0.024) -1.500 (0.047) 0 1
Sev_Med 0.333 (0.005) 0.471 0.707 (0.024) -1.500 (0.047) 0 1
Sev_Low 0.333 (0.005) 0.471 0.707 (0.024) -1.500 (0.047) 0 1
r 0.000 (0.004) 0.402 -0.14 (0.024) -0.039 (0.047) -1.40 1.47
Dataset 3
IntComply ‘ 3.871 (0.020) 2.115 -0.005 (0.024) -0.8965 (0.047) ‘ -1.39 ‘ 9.14
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Table B1. Descriptive Statistics of Dimension Levels from Datasets 1-3 (Step One)

Cel_Hi 0.333 (0.005) 0.471 0.707 (0.024) -1.500 (0.047) 0 1
Cel_Med 0.333 (0.005) 0.471 0.707 (0.024) -1.500 (0.047) 0 1
Cel_Low 0.333 (0.005) 0.471 0.707 (0.024) -1.500 (0.047) 0 1

Crt_Hi 0.333 (0.005) 0.471 0.707 (0.024) -1.500 (0.047) 0 1
Crt_Med 0.333 (0.005) 0.471 0.707 (0.024) -1.500 (0.047) 0 1
Crt_Low 0.333 (0.005) 0.471 0.707 (0.024) -1.500 (0.047) 0 1

Sev_Hi 0.333 (0.005) 0.471 0.707 (0.024) -1.500 (0.047) 0 1
Sev_Med 0.333 (0.005) 0.471 0.707 (0.024) -1.500 (0.047) 0 1
Sev_Low 0.333 (0.005) 0.471 0.707 (0.024) -1.500 (0.047) 0 1

r -0.004 (0.004) 0.402 -0.006 (0.024) 0.028 (0.047) -1.46 1.55
Notes: N = 10,800 (400 individuals, 27 vignettes each). Mean of dummy (0O, 1) variables indicate frequency of the variable.

Table B2. Manipulation Effect Sizes of Dimensions from Datasets 1-3 (Step Two)

Dimension Mean (st. err.) ‘ St. dev. ‘ Skewness (st. err.) Kurtosis (st. err.) | Min. ‘ Max.
Dataset 1
IntComply 2.370 (0.012) 1.215 0.000 (0.024) -0.437 (0.047) -1.11 5.76
Celerity 0.751 (0.006) 0.615 0.010 (0.024) -1.500 (0.047) 0.00 1.51
Certainty 0.6257 (0.005) 0.510 -0.005 (0.024) -1.500 (0.047) 0.00 1.25
Severity 1.005 (0.008) 0.821 0.004 (0.024) -1.500 (0.047) 0.00 2.01
Dataset 2
IntComply 2.375 (0.012) 1.209 0.007 (0.024) -0.478 (0.047) -1.29 6.04
Celerity 0.750 (0.006) 0.614 0.011 (0.024) -1.500 (0.047) 0.00 1.51
Certainty 0.622 (0.005) 0.508 0.003 (0.024) -1.500 (0.047) 0.00 1.25
Severity 0.997 (0.008) 0.815 0.006 (0.024) -1.500 (0.047) 0.00 2.00
Dataset 3
IntComply 3.871 (0.020) 2115 -0.005 (0.024) -0.896 (0.047) -1.39 9.14
Celerity 2.258 (0.018) 0.1.84 -0.006 (0.024) -1.500 (0.047) 0.00 4.51
Certainty 0.628 (0.005) 0.512 -0.008 (0.024) -1.500 (0.047) 0.00 1.25
Severity 0.993 (0.008) 0.813 0.010 (0.024) -1.500 (0.047) 0.00 1.99
Notes: manipulation effect sizes are composites of dimension levels displayed in Table B1. N = 10,800 (400 individuals, 27
vignettes each).
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Appendix C: Comparison of Type I Sums of Squares for Cel_Hi and
Cel_Med

A mathematical comparison of sequential or Type | sums of squares for Cel_Hi and Cel_Med explains
how larger dimension intervals inflate unstandardized 8 and standardized B coefficients of Celerity in
steps one and two, respectively. We examined two sets of univariate general models for each dataset
using IBM SPSS Statistics version 24. The first models (i.e., Table C1: Models C1-1a, C1-2a, and C1-3a)
contained the dummy variables for Crt_Hi, Crt_Med, Sev_Hi, and Sev_Med as predictors in Datasets 1, 2,
and 3, respectively. The second models (i.e., Models C1-1b, C1-2b, and C1-3b) added the dummy
variables for Cel_Hi and Cel_Med to their corresponding first models. We added the Cel_Hi and Cel_Med
dummy variables at the end of SPSS’ UNIANOVA command of the first model; therefore, the first models
are nested in their corresponding second models.

Results in Table C1 show several marginal effects of increasing the dimension interval of Celerity from
0.00 — 1.00 to 0.00 — 3.00 without a corresponding change in the unstandardized B. Perhaps the most
direct change is the nine-fold increase in the sum of squares for Cel_Hi and Cel_Med from Model C1-1b
(Dataset 1) and Model C1-2b (Dataset 2) to Model C1-3b (Dataset 3). Partitioning the total sum of squares
reveals that Cel Hi and Cel Med account for about 76 percent of the total sum of squares in Dataset 3
but only 26 percent in Datasets 1 and 2. These increases also affect the A adjusted R? statistics, which in
Dataset 3 is about three times that of Datasets 1 and 2 (i.e., 0.758 vs. 0.257 and 0.258, respectively). The
differences in R? and adjusted R? values result from the individual sum of squares used to calculate these
statistics (e.g., R2 = 1 — (error sum of squares / total sum of squares)). Figure C1 displays the SPSS code
we used to perform the sum of squares analyses of Datasets 1-3.

Table C1. Sum of Squares from Datasets 1-32

Dataset 1 Dataset 2 Dataset 3
Model C1-1a® | Model C1-1b¢ | Model C1-2a° | Model C1-2b¢ | Model C1-3a® | Model C1-3b°
Source
Crt_Hi 2,100.7" 2,100.7"" 2,097.5™ 2,097.5™ 2,112.4™ 2,112.4™
Crt_Med 708.1™ 708.1™ 694.3™ 694.3™ 7.7 7.7
Sev_Hi 5,476.9™ 5,476.9™ 5,397.8™ 5,397.8™ 5,385.3™ 5,385.3™
Sev_Med 1,811.4™ 1,811.4™ 1,780.1™ 1,780.1™ 1,753.0™ 1,753.0™
Cel_Hi 3,079.3™ 3,075.2"™ 27,368.7"
Cel_Med 1,003.5™ 1,002.2™ 9,233.5™
Residual 5,839.1 1,756.4 5,823.9 1,746.5 38,343.0 1,740.8
Total (corrected?) 15,936.1 15,936.1 15,793.4 15,793.4 48,311.4 48,311.4
Goodness of fit
R? 0.634 0.890 0.631 0.889 0.206 0.964
Adjusted R? 0.633 0.890 0.631 0.889 0.206 0.964
A Adjusted R%® 0.257 0.258 0.758

2 N = 10,800 at vignette level; N = 400 at individual level. Type | (i.e., “sequential’) sum of squares generated with univariate
general linear models. Sources in first columns are the dummy variables of the listed parameters.

® We entered predictors in Models C1-1a, C1-2a, and C1-3a in the following order: Crt_Hi, Crt_Med, Sev_Hi, and Sev_Med.

¢ We entered predictors in Models C1-1b, C1-2b, and C1-3b in the following order: Crt_Hi, Crt_Med, Sev_Hi, Sev_Med, Cel_Hi, and
Cel_Med. Thus, Model C1-1a is nested in C1-1b, C1-2a in C1-2b, and C1-3a in C1-2b.

9 The “corrected total” is the sum of the sums of squares for the main effects and residual term.

¢ A Adjusted R? is based on difference from corresponding nested model.
**p<.001, ** p<.01,*p<.05.
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comment - Sequential Sum of Squares, First Model.
comment - "Build Term(s)" set to "Main effects"; intercept included.
UNIANOVA intComply WITH dumCrtHi dumCrtMed dumSevHi dumSevMed
/METHOD=SSTYPE(1)
/INTERCEPT=INCLUDE
/CRITERIA=ALPHA(.05)
/DESIGN=dumCrtHi dumCrtMed dumSevHi dumSevMed.

comment - Sequential Sum of Squares, Second Model.
comment - "Build Term(s)" set to "Main effects"; intercept not included.
comment — dumCelHi and dumCelMed added at end of UNIANOVA command, so
the first model is nested within the second.
UNIANOVA intComply WITH dumCrtHi dumCrtMed dumSevHi dumSevMed dumCelHi dumCelMed
/METHOD=SSTYPE(1)
/INTERCEPT=INCLUDE
/CRITERIA=ALPHA(.05)
/DESIGN=dumCrtHi dumCrtMed dumSevHi dumSevMed dumCelHi dumCelMed.

Figure C1. SPSS Code for Sum of Squares Analyses of Datasets 1-3
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Appendix D: Generation and Analysis of Multilevel Dataset 4

We begin by assuming the reader has a rudimentary knowledge of multilevel modeling. A wide variety of
reference texts exists for those who wish to learn more about these techniques. Klein and Kozlowski
(2000) is a well-respected text on multilevel theory and techniques. Raudenbush and Bryk (2002) is
particularly useful in RCM and the Hierarchical Linear Modeling (HLM) software. Multilevel methods such
as hierarchical logit modeling are also available for dichotomous dependent variables (Wong & Mason,
1985).

We constructed illustrative multilevel data following Hofmann and Gavin (1998, pp. 628-633). We
generated Dataset 4 from vignettes created from the above 3 x 3 x 3 design under the following
specifications. First, three independent variables (i.e., Celerity, Certainty, and Severity) are the vignette-
level (level-one) predictors of the dependent variable IntComply. We estimated the models using full
maximum likelihood. We generated data based on the following equations, which we write in RCM
notation. Equation D1 describes the level-one portion of the model:

IntComplyiv = oiv + (TT1iv + Cel_Lowiy ) + (1T2iv * Cel_Mediv ) + ( m3iv * Cel_Hii ) +
(raiv * Crt_Lowiv ) + ( 11siv * Crt_Mediv ) + (mTeiv * Crt_Hin ) + (D1)

(1r7iv * Sev_Lowiv ) + (17siv * Sev_Mediv ) + (1moiv * Sev_Hiiv ) + eiv,

where IntComply represents the dependent variable for individual / and vignette v; Cel _Lowi, Cel _Medi,
and Cel_Hiy are dummy (0, 1) variables that represent the presence of statements about low, medium,
and high dimension levels, respectively, of the Celerity factor; Crt_Lowi, Crt_Medy, and Crt Hiy are
dummy (0O, 1) variables that represent the presence of statements about low, medium, and high dimension
levels, respectively, of the Certainty factor; and Sev_Lowi , Sev_Medy, and Sev_Hiy are dummy (0, 1)
variables that represent the presence of statements about low, medium, and high dimension levels,
respectively, of the Severity factor; mqiv represents the coefficient of the independent variables of order g in
the right-hand side of the equation; and ei represents the vignette-level residuals.

Equations D2 to D8 describe the level-two portion of the model:

Mo = Boo + Bo1RiskAverse +ro (D2)
m = B1o + B11RiskAverse +r1 (D3)
M2 = B2o + B21RiskAverse +r. (D4)
M3 = Bso + Ba1RiskAverse +rs (D5)
M4 = Bao + ParRiskAverse +r4 (D6)
M5 = Bs0 + Bs1RiskAverse +rs (D7)
M6 = Beo + Be1RiskAverse +rs, (D8)

where mo — e represent the level-one intercept and slopes; e the level-one residual; Boo — Bso the
“average values” (Raudenbush & Bryk, 2002, p. 30) of the mo — e intercept and slopes, respectively; Bo+
— Be1 the slopes between RiskAverse and mo — e, respectively; and r1 — rs the level-two residuals.

Table D1 displays the dummy variable values entered into Equation D1 for each vignette used to generate
Dataset 4. We set the magnitudes of low-, medium-, and high-level dimension levels (e.g., Crt_Medmag
represents a medium-level magnitude of factor Certainty; Sev_Himag represents a high level of
magnitude of factor Severity) at 0.0, 0.5, and 1.0, respectively. Table D2 displays the parameters we used
to generate Dataset 4—which are the same as for Dataset 1, Table 1—for the reader’s convenience.
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Table D1. Dummy Variable Values by Factor Statement and Vignette: Level One, Step One

. Statement dummy variables
Vignette Cel_Hi | Cel_ Med | Cel_ Low | Crt_Hi | Crt_ Med | Crt_Low Sev_Hi | Sev_Med | Sev_Low
1 0 0 1 0 0 1 0 0 1
2 0 0 1 0 0 1 0 1 0
3 0 0 1 0 0 1 1 0 0
4 0 0 1 0 1 0 0 0 1
5 0 0 1 0 1 0 0 1 0
6 0 0 1 0 1 0 1 0 0
7 0 0 1 1 0 0 0 0 1
8 0 0 1 1 0 0 0 1 0
9 0 0 1 1 0 0 1 0 0
10 0 1 0 0 0 1 0 0 1
11 0 1 0 0 0 1 0 1 0
12 0 1 0 0 0 1 1 0 0
13 0 1 0 0 1 0 0 0 1
14 0 1 0 0 1 0 0 1 0
15 0 1 0 0 1 0 1 0 0
16 0 1 0 1 0 0 0 0 1
17 0 1 0 1 0 0 0 1 0
18 0 1 0 1 0 0 1 0 0
19 1 0 0 0 0 1 0 0 1
20 1 0 0 0 0 1 0 1 0
21 1 0 0 0 0 1 1 0 0
22 1 0 0 0 1 0 0 0 1
23 1 0 0 0 1 0 0 1 0
24 1 0 0 0 1 0 1 0 0
25 1 0 0 1 0 0 0 0 1
26 1 0 0 1 0 0 0 1 0
27 1 0 0 1 0 0 1 0 0
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Table D2. Parameters Used to Generate Dataset 42

Vignette-level parameter Datasets 1 & 4 Dataset 2 Dataset 3
IntComply-intercept (Bo) 0.00 0.00 0.00
B1 (Celerity coefficient) 1.50 0.50 1.50
Cel_Low / Cel_Med | Cel_Hi (dimension-level) effects | 0.00/0.50/1.00 | 0.00/1.50/3.00 0.00/1.50/3.00
B2 (Certainty coefficient) 1.25 1.25 1.25
oritow [ CriMed [ CrLAl (dimension-level) effectl 000/0.50/1.00 | 0.00/0.50/1.00 | 0.00/0.50/1.00
Bs (Severity coefficient) 2.00 2.00 2.00
Sev_Low [ Sev_Med [ Sev_fii (dimension-level) effectl '9.00/0.50/1.00 | 0.00/0.50/1.00 | 0.00/0.50/1.00
Residual (et) 0.00 (0.40) 0.00 (0.40) 0.00 (0.40)

2We used Dataset 1 parameters to generate Dataset 4. We provide the parameters for Datasets 2 and 3 as a reference. We include
standard deviations in parentheses where applicable (e.g., for residuals). N = 10,800 (400 individuals, 27 vignettes each).
Coefficients and dimension-level effect sizes for variables Certainty and Severity (e.g., B2, Crt_Low, and Crt_Hi; B3, Sev_Low, and
Sev_Hi) remain constant across all three datasets.

Table D3. Level-two Intercepts Boo — Beo (for Level-one Coefficients m1 — 16): Step One

Model Level-two coefficient Boj (intercept of cross-level effect of RiskAverse)
Intercept?® Celerity? Certainty Severity
4-1 0.00 1.50 1.25 2.00
Level-two coefficient B1j (coefficient of cross-level effect of RiskAverse)
4-1 0.25 0.4 0.00 0.00

2 Values listed in this column are for the constants S in the level-two equations m; = Bio + Bi1RiskAverse + uj. The value of m; will
vary in multilevel models when RiskAverse is added as a level-two moderator.

Figure D1 provides the R code we used to generate Dataset 4 for Tables 4, 6, and 8.

# R code to generate Dataset 4 for Tables 4, 6, and 8.

# Datasets will be stored in the working directory in a new folder, “FSM_Datasets”.
#

# Constants used throughout this file.

# Dimension-level effect sizes. These are equal to Dataset 1, Table 1.
celHi<- 1.0

celMed <- 0.5

celLow <- 0.0

crtHi <- 1.0

crtMed <- 0.5

crtLow <- 0.0

sevHi <-1.0

sevMed <- 0.5

sevLow <- 0.0

# Beta coefficients. These are equal to Dataset 1, Table 1.

celCoeff <- 1.50

crtCoeff <- 1.25

sevCoeff <- 2.00

# Residual standard deviations. Ensure the e_sd is the same as Dataset 1.
e sd<-04 #Level-1

r0_sd <- 0.2 # Level-2 residual for level-1 intercept.

r1_sd <- 0.2 # Level-2 residual for level-2 coefficient for celHi

r2_sd <- 0.2 # Level-2 residual for level-2 coefficient for celMed
r3_sd <- 0.2 # Level-2 residual for level-2 coefficient for celLow

# Level-2 values.
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riskAverseMean <- 3.0
riskAverse sd <- 1.25
fixedGamma01 <- 0.25
fixedGamma11 <- 0.4

# Generate VignID numbers.
vignID <- seq(from = 1001, to = 11800, by = 1)
#

# Generate Count numbers.
for(i in 1:400){

if(i <= 1) {
count <- seq(from =1, to = 27, by = 1)
}else {
count <- c(count, seq(from = 1, to = 27, by = 1))
}
}
#

# Generate individual (subject) ID numbers.
indiviD_400 <- seq(from = 101, to = 500, by = 1)
indivID <- c(101, 101)
for(i in 3:27) {

indiviD <- c(indivID, 101)

}
for(i in 102:500) {
for(j in 1:27) {
indiviD <- c(indivID, i)
}
}
#
# Generate residuals. Certainty and Severity dummy variable coefficients are
# fixed, so residuals are not needed for those four variables.
e <- rnorm(10800,mean=0,sd=e_sd)
#
# Generate level-two RiskAverse and residual values.
riskAverse_temp <- rnorm(1,mean=riskAverseMean,sd=riskAverse_sd)
r0_temp <- rnorm(1,mean=0,sd=r0_sd)
r1_temp <- rnorm(1,mean=0,sd=r1_sd)
r2_temp <- rnorm(1,mean=0,sd=r2_sd)
r3_temp <- rnorm(1,mean=0,sd=r3_sd)
riskAverse_400 <- riskAverse_temp # This generates a list of the 400
r0_400 <-r0_temp #individual riskAverse values by individual.
r1_400 <-r1_temp
r2_400 <-r2_temp
r3_400 <-r3_temp
for(i in 2:400) {
# Generate a level-2 vectors with 400 items
riskAverse_temp <- rnorm(1,mean=riskAverseMean,sd=riskAverse_sd)
rO_temp <- rnorm(1, mean=0, sd=r0_sd)
r1_temp <- rnorm(1, mean=0, sd=r1_sd)
r2_temp <- rnorm(1, mean=0, sd=r2_sd)
r3_temp <- rnorm(1, mean=0, sd=r3_sd)
riskAverse_400 <- rbind(riskAverse_400, riskAverse_temp) # This generates a list of the 400
r0_400 <- rbind(r0_400, r0_temp) #individual level-2 values by
r1_400 <- rbind(r1_400, r1_temp) # individual.
r2_400 <- rbind(r2_400, r2_temp)
r3_400 <- rbind(r3_400, r3_temp)

}
i
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# Vignette-level independent (dummy) variables

for(i in 1:3) {
if(i == 1) {
percdCel <- ¢(0, 0, 1)
}else if(i == 2) {
percdCel <- ¢(0, 1, 0)
}else {
percdCel <- c(1, 0, 0)
}
for(j in 1:3) {
if(j == 1) {
percdCrt <- ¢(0, 0, 1)
}else if(j == 2) {
percdCrt <- ¢(0, 1, 0)
}else {

percdCrt <- ¢(1, 0, 0)

}
for(k in 1:3) {
if(k ==1){
percdSev <- c¢(0, 0, 1)
}else if(k == 2) {
percdSev <- ¢(0, 1, 0)
}else {
percdSev <-¢(1, 0, 0)
}
temp <- c(percdCel, percdCrt, percdSev)
ifi==1&j==1&k==1){
vignetteComp <- temp
}else {
vignetteComp <- rbind(vignetteComp, temp)

}
}

}

#

# Moderating and direct effects on the dependent variable, Intention to Comply (intComply).

Ivi1_count <-0 # Level-1 counter variable for following for loops, 1 to 10800

riskAverseCheck 10800 <-0

eCheck_10800 <- 0

rOCheck_10800 <- 0

r1Check_10800 <- 0

r2Check_10800 <- 0

r3Check_10800 <- 0

for(i in 1:400) {

for(j in 1:27) {

Ivi1_count <- Ivi1_count + 1
tp0 <- (fixedGammaO01 * riskAverse_400[i]) + r0_400[i]
tp1 <- (vignetteComplj,1] * celHi) * (celCoeff + (fixedGamma11 * riskAverse_400[i]) + r1_400][i])
tp2 <- (vignetteComplj,2] * celMed) * (celCoeff + (fixedGamma11 * riskAverse_400[i]) + r2_400[i])
tp3 <- (vignetteComp]j,3] * celLow) * (celCoeff + (fixedGamma11 * riskAverse_400[i]) + r3_400[i])
tp4 <- (vignetteComp[j,4] * crtHi * crtCoeff)
tp5 <- (vignetteCompJj,5] * crtMed * crtCoeff)
tp6 <- (vignetteComp]j,6] * crtLow * crtCoeff)
tp7 <- (vignetteComp]j,7] * sevHi * sevCoeff)
tp8 <- (vignetteComp]j,8] * sevMed * sevCoeff)
tp9 <- (vignetteComp(j,9] * sevLow * sevCoeff)
temp <- tp0 + tp1 + tp2 + tp3 + tp4 + tp5 + tp6 + tp7 + tp8 + tp9 + e[lvi1_count]
ifi==1&j==1){
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intComply <- temp
# Initialize check variables to be printed in level-1 output.
riskAverseCheck 10800 <- riskAverse_400][i]
eCheck_10800 <- e[lvi1_count]
rOCheck_10800 <- rO_400][i]
r1Check_10800 <- r1_400[i]
r2Check_10800 <- r2_400[i]
r3Check_10800 <- r3_400][i]

}else {
intComply <- rbind(intComply, temp)
# Update check variables to be printed in level-1 output.
riskAverseCheck 10800 <- rbind(riskAverseCheck_ 10800, riskAverse_400[i])
eCheck 10800 <- rbind(eCheck_10800, e[lvi1_count])
rOCheck_10800 <- rbind(rOCheck_10800, r0_400[i])
r1Check_10800 <- rbind(r1Check_10800, r1_400[i])
r2Check_10800 <- rbind(r2Check_10800, r2_400[i])
r3Check_10800 <- rbind(r3Check_10800, r3_400[i])

}
}
#
# Create level-1 csv file.
# Add "FSM_Datasets" folder to working directory if necessary.
if(file.exists(file.path(getwd(),"FSM_Datasets"))) {
# If the FSM_Datasets folder exists, do nothing.
}else {
dir.create(file.path(getwd(),"FSM_Datasets"))

}
fileContents <- cbind(vignID, count, indivID, intComply, eCheck_10800, riskAverseCheck_10800,
rOCheck_10800, r1Check_10800, r2Check_10800, r3Check _10800)

# Copy the celHi-celMed...sevLow matrix for each individual.
vignetteComp400 <- vignetteComp
for(i in 2:400) {

vignetteComp400 <- rbind(vignetteComp400, vignetteComp)
}

fileContents <- cbind(fileContents, vignetteComp400)

# Name columns.

# RiskAverse and residuals (both levels one and two) are included in output for verification

# purposes

colnames(fileContents) <- ¢("VignID", "Count", "IndiviD", "IntComply",
"e_IvI1Check", "RiskAverse_lvl1Ccheck",
"rO_Ivi1Check","r1_Ivl1Check","r2_Ivl1Check","r3_Ivl1Check",
"Cel_Hi", "Cel_Med", "Cel_Low",
"Crt_Hi", "Crt_Med", "Crt_Low",
"Sev_Hi", "Sev_Med", "Sev_Low")

write.csv(fileContents, file="FSM_Datasets/R_FigureD1_Dataset4 Level1.csv",

row.names = FALSE)

# Create level-2 csv file.

fileContents2 <- cbind(indiviD_400, riskAverse_400, r0_400, r1_400, r2_400, r3_400)

colnames(fileContents2) <- ¢("indiviD", "RiskAverse", "r0", "r1", "r2", "r3")

# Level-2 residuals are stored in "R_FigureD1_Dataset4_Level1.csv".

write.csv(fileContents2, file="FSM_Datasets/R_FigureD1_Dataset4 _Level2.csv",
row.names = FALSE)

Figure D1. R Code to Generate Dataset 4
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Table D4. Descriptive Statistics for Dataset 4

Parameters used to generate dataset?
Level-one parameter Level Level-two parameter Mean
1Toi (intercept) 1 Boo (intercept) 0.00
Bo1 (RiskAverse coefficient) 0.25
uo (residual) 0.00 (0.10)
i (Cel_Hi coefficient)? 1 Bio (intercept) 1.50
B11 (RiskAverse coefficient) 0.40
u1 (residual) 0.00 (0.10)
i (Cel_Med coefficient)? 1 B2o (intercept) 0.75
B 21 (RiskAverse coefficient) 0.00
u2 (residual) 0.00 (0.10)
m3i (Cel_Low coefficient)® 1 Bso (intercept) 0.00
B 31 (RiskAverse coefficient) 0.00
us (residual) 0.00 (0.10)
m4i (Crt_Hi coefficient)® 1 Bao (intercept) 1.25
Ba1 (RiskAverse coefficient) 0.40
us (residual) 0.00 (0.10)
msi (Crt_Med coefficient)? 1 Bso (intercept) 0.75
Bs1 (RiskAverse coefficient) 0.00
us (residual) 0.00 (0.10)
mei (Crt_Low coefficient)® 1 Beo (intercept) 0.00
Bs1 (RiskAverse coefficient) 0.00
us (residual) 0.00 (0.10)
7 (Sev_Hi coefficient)? 1 Bro (intercept) 2.00
B71 (RiskAverse coefficient) 0.40
u7 (residual) 0.00 (0.10)
i (Sev_Med coefficient)? 1 Bso (intercept) 1.00
Bs1 (RiskAverse coefficient) 0.40
us (residual) 0.00 (0.10)
mai (Sev_Low coefficient)? 1 Boo (intercept) 1.50
Bo1 (RiskAverse coefficient) 0.40
ug (residual) 0.00 (0.10)
ri (residual) 1 N/A 0.00 (0.40)
RiskAverse 2 N/A 3.00 (1.25)
Descriptive statistics of generated dataset
Variable Mean St;nir;.nof St. dev. | Skewness :I:e\?vrr:e:; Kurtosis ?(tt.n?tgéizf Min. | Max.
Level one®
IntComply | 3.674 0.016 1.643 0.177 0.024 -0.363 0.047 -0.81 | 9.24
Cel_Hi 0.33 0.005 0.471 0.707 0.024 -1.500 0.047 0.0 1.0
Cel_Med 0.33 0.005 0.471 0.707 0.024 -1.500 0.047 0.0 1.0
Cel_Low 0.33 0.005 0.471 0.707 0.024 -1.500 0.047 0.0 1.0
Crt_Hi 0.33 0.005 0.471 0.707 0.024 -1.500 0.047 0.0 1.0
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Table D4. Descriptive Statistics for Dataset 4

Crt_Med 0.33 0.005 0.471 0.707 0.024 -1.500 0.047 0.0 1.0
Crt_Low 0.33 0.005 0.471 0.707 0.024 -1.500 0.047 0.0 1.0
Sev_Hi 0.33 0.005 0.471 0.707 0.024 -1.500 0.047 0.0 1.0
Sev_Med 0.33 0.005 0.471 0.707 0.024 -1.500 0.047 0.0 1.0
Sev_Low 0.33 0.005 0.471 0.707 0.024 -1.500 0.047 0.0 1.0
e 0.00 0.004 0.397 .001 0.024 -0.034 0.047 -1.49 | 1.46
Level two®
RiskAverse | 2.925 0.062 1.246 -0.110 0.122 0.417 0.243 -1.35 | 7.56
ro -0.012 0.010 0.197 -0.101 0.122 0.084 0.243 -0.67 | 0.057
r -0.005 0.011 0.216 0.165 0.122 -0.016 0.243 -0.541 | 0.684
rz -0.015 0.010 0.200 0.105 0.122 -0.332 0.243 -0.505 | 0.628
ra 0.007 0.010 0.204 0.236 0.122 0.030 0.243 -0.487 | 0.617
@ We include standard deviations in parentheses where applicable (e.qg., for residuals). Subscripts will not match models in the text
when low-dimension dummy variables are omitted to preclude linear dependences.
® We generated high, medium, and low coefficients by multiplying this base factor by 1.00, 0.50, and 0.00, respectively. For
example, the Celerity coefficient for the high dummy variable = 1.50 * 1.00 = 1.50, for the medium dummy variable = 1.50 * 0.50 =
0.75, and for the low dummy variable = 1.50 * 0.00 = 0.00. These coefficients would then be multiplied by the value of the
corresponding dummy variable. If a vignette contained Cel_Med (and not Cel_Hi or Cel_Low), the Celerity effect would be (Cel_Hi
*1.50) + (Cel_Med * 0.75) + (Cel_Low * 0.00) = (0 * 1.50) + (1 * 0.75) + (0 * 0.00) = 0.75.
¢ N =10,800 (400 individuals, 27 vignettes each) for all statistics except RiskAverse, where N = 400.

Figure D2 displays the R code for CPE step two in Tables 5, 7, and 9 (Dataset 4).

# R code to generate step two (CPE) of Dataset 4 for Tables 5, 7, and 9.
# Do not use for Table 3!
# Both tables read the following file, but beta coefficients diff in lines 10 and 11.

# Enter the correct modelNum below.
modelNum <- 91 # Enter "5", "7", "91" (Model 9-1), or "92" (Model 9-2).

#

data <- read.csv(file = "FSM_Datasets/R_FigureD1_Dataset4 Level1.csv")
#

# Replace "n.nnn" with beta coefficients from step one.

#

Celerity_High <- n.nnn
Celerity_Med <- n.nnn
Certainty_High <- n.nnn
Certainty_Med <- n.nnn
Severity_High <- n.nnn
Severity Med <- n.nnn
#
# Generate aggregate data variables
Celerity <- (data[11] * Celerity_High) + (data[12] * Celerity_Med)
Certainty <- (data[14] * Certainty_High) + (data[15] * Certainty_Med)
Severity <- (data[17] * Severity_High) + (data[18] * Severity_Med)
#
# Create csv file that mimics Table10Data. Dummy variables and RiskAverse included for
# references purposes
fileContents <- cbind(data[,1:4], data[6],data[,11:19], Celerity, Certainty, Severity)
colnames(fileContents) <- ¢("vignID", "count", "indivID", "IntComply", "RiskAverse",
"dumCelHi", "dumCelMed", "dumCelLow",
"dumCrtHi", "dumCrtMed", "dumCrtLow",
"dumSevHi", "dumSevMed", "dumSevLow",
"Celerity", "Certainty", "Severity")
# Create csv output file.
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if (modelNum == 5) {
write.csv(fileContents, file="FSM_Datasets/R_Table_5 Step2CPE.csv",
row.names = FALSE)
} else if (modelNum == 7) {
write.csv(fileContents, file="FSM_Datasets/R_Table_7_Step2CPE.csv",
row.names = FALSE)
} else if (modelNum == 91) {
write.csv(fileContents, file="FSM_Datasets/R_Model_9-1_Step2CPE.csv",
row.names = FALSE)
}else {
write.csv(fileContents, file="FSM_Datasets/R_Model_9-2_Step2CPE.csv",
row.names = FALSE)

Figure D2. R Code to Generate Step Two (CPE) Results for Tables 5, 7, and 9

10.17705/1CAIS.04208 Paper 8

www.manaraa.com




228 Ranking Factors by Importance in Factorial Survey Analysis

Appendix E: HLM for Windows Code for Tables 6-9

Figures E1 and E2 show the HLM for Windows code for Models 6-4, 8-3, and 8-4. Note that the main
difference between the two figures is that the level-two variable RiskAverse is uncentered in Models 6-4
and 8-3 (as represented by plain font) but grand-mean centered in Model 8-4 (as represented by bold-
italic font). All variables in the level-one model in Figure E1 are dummy variables. The level-one
coefficients ms — 16 are fixed across groups in both models. Also note that variable names in HLM are
capitalized and clipped to an eight-character length (e.g., IntComply to INTCOMPL and RiskAverse to
RISKAVER). Figure E3 displays the HLM for Windows code for Table 7. We ran all HLM models using full
maximum likelihood estimation.

WHLM: him2 MDM File: mdmFile0l.mdm  Command File: Figure_ET.him — O >
File Basic Settings Other Settings  Run Analysis  Help
I Outcome | LEVEL 1 MODEL (bold: group-mean centering; bold italic: grand-mean centering) -
Lewvel-1
INTCOMPL = + CEL_HI] + CEL_MED] + CRT_HI] + CRT_MED] +
>> Level2 << | 7o + m(CELHI) + mCEL_MED] + 75(CRT_HI] + 7,(CRT_MED)
INTRCPT2 Tﬁl:SEV_H” + ?.‘ﬁl:SEV_MED] +e
RISKAVER
LEVEL 2 MODEL (bold italic: grand-mean centering)
T = LFogpt fml:FHSKAVER] +ry
Ty = Fyp ¥ E4RISKAVER] + r,
R fZil:FHSKAVER] +r,
73 = Fao
Ty = Fgp 7 L
75 = Fsp s
7 = Feo " e
Mixed| v
Figure E2. HLM for Windows Code for Tables 6-4 and 8-3
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WHLM: him2 MDM File: mdmFilel2.mdm  Command File: Figure_E2.hlm — O x
File Basic Settings Other Settings  Run Analysis  Help

I Outcome | LEVEL 1 MODEL (bold: group-mean centering; bold talic; grand-mean centering) ~
Level-1
INTCOMPL = + 7, ICEL_HI| + =,(CEL MED] + #,(CRT_HI) + = (CET MED] +
>> Level-2 << | 7 + m(CELHI) + mp(CEL_MED) + 75(CRT_HI] + =,(CRT_MED)
INTRCPT2 ?.'ﬁl:SEV_H” + ?FEISEV_MED] +e
RISKAVER
LEVEL 2 MODEL (bold talic: grand-mean centering)
Ty = fpg + £p|RISKAVER] + 1
Ty = fyg t £y (RISKAVER) + 1,
Ty = oy + £y (RISKAVER) + 1,
T3 = Fag
?|_4 = f‘#ﬂ o .._'
75 = Fsg 7 s
g = Fgg "'
v
Figure E2. HLM Code for Model 8-4
WHLM: him2 MDM File: mdmFiled3.mdm  Cemmand File: Figure_E3.hlm - O >
File Basic Settings Other Settings  Run Analysis  Help
| Outcome | LEVEL 1 MODEL (bold: group-mean centering; bold italic: grand-mean centering) "
L -

__E INTCOMPL = = + r,(CELERITY) + r,(CERTAINT) + r.(SEVERITY) +
»> Level2 << | o 2 3
INTRCPTZ LEVEL 2 MODEL (bold ttalic: grand-mean centering)

RISKAVER Ty = Eay *+ Loy (RISKAVER) + 1,
7y = Fyg ¥ £y RISKAVER) + 1,
Ty = Fog 0
T3 = Fgp T
v
Figure E3. HLM for Windows Code for Table 7
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Appendix F: Some Effects of Inconsistent Centering Across Steps 1 and 2

It is useful to examine how inconsistent centering affects CPE step two (Table F1). Note that the
procedures we used to calculate Table F1 are for pedagogical purposes only—we do not consider them to
be best practices (or even fairly reasonable ones). Essentially, Table F1 mirrors Table 9 except for the
inconsistent centering of the level-two variable RiskAverse. Models 9-1 and 9-2 each match the types of
centering in steps one and two (i.e., Model 9-1 uses uncentered RiskAverse and Model 9-2 uses
RiskAverseamc). Table F1, on the other hand, demonstrates how incorrect results arise when centering
mismatches occur between steps one and two.

Table F1. Effects of Inconsistent Centering on HLM Analyses of Factorial Surveys: Step Two (Dataset 4)?

Model True value F1-1 F1-2
Level-one
(Celerity,
Certainty, Uncentered
Severity)
CPE process Step one inputs®|  Step two results Sifr?u(t)sr:’e Step two results
Level-two
RiskAverse Uncentered GMC GMC Uncentered
centering
Coefficient Model 8-3 8 B B° Model 8-4 8 B B°

Level-one intercept and independent variables (coefficients) mo — m3

Mo (Boo, level-two
intercept for 0.00 N/A 0.694*** N/A -0.020
IntComply- ' (0.013) (0.029)

intercept o)

m (B10, level-
two intercept for | Cel_Hi: 1.50 Cel _Hi: 1.497 | 1.788*** | 0.665*** | Cel Hi:2.677 | 0.559*** | 0.372***

Celerity Cel_Med: 0.75 | Cel_Med: 0.753 | (0.010) Cel_Med: 1.324 | (0.015)
coefficient 171)

m2 (B20, level-
two intercept for Crt_Hi: 1.25 Crt_Hi: 1.259 1.000*** | 0.311*** | Crt_Hi: 1.259 1.000%** | 0.311***
Certainty Crt_Med: 0.625 | Crt_Med: 0.646 | (0.002) Crt_Med: 0.646 | (0.007)
coefficient m2)®

3 (B30, level-
two intercept for | Cel_Hi: 2.00 Sev_Hi: 2.008 | 1.000*** | 0.500*** | Sev_Hi: 2.008 | 1.000*** | 0.500***

Severity Cel_Med: 1.00 | Sev_Med: 1.003| (0.001) Sev_Med: 1.003 | (0.004)
coefficient 13)®

Direct and moderating effects of level-two RiskAverse on level-one coefficients m — m3

/n%:;%iy. 0.246™** 0,247+
intercept) (0.009) (0.009)
B11 (11, Celerity) 0(.538;*)* (z 01(5)(1) :,)*
Goodness of fit
Deviance NA 12,142.8 12,132.3
Parameters NA 17 17

2 N = 10,800 at vignette level; N = 400 at individual level. Unstandardized coefficient estimates and robust standard errors (in
parentheses) reported.

> These step one B values are used as inputs to step two CPE models.

¢ B values calculated using Equation 1. sy and s, values are taken from the HLM for Windows’ MDM template file.

***p<.001, ** p<.01, * p<.05.

Perhaps the most notable change in Table F1 is that the step two 8 coefficients of Celerity in Models F1-1
and F1-2 do not equal or even approximate 1.000. Instead, the values widely differ: 1.788 in Model F1-1
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and 0.559 for Model F1-2. These results by themselves suggest something is amiss, though the
differences in how we modeled RiskAverse can explain them. Using Equation 3 and assuming r1 = 0, we
can calculate the 10 value for Model F1-1 (step two) when RiskAverse equals Uriskaverse rather than 0.00:

m1 = B10 + B11RiskAverse + r (F1)
1.788 = B10 + 0.270(2.925) + (0) (F2)
B1o =1.788-0.790 + (0) (F3)
B10 =0.998 (F4)

Calculating the B10 value in Model F1-2, however, is not as straightforward because the step one inputs
(i.e., B values) in Model F1-2 are based on commingled effects of both Celerity and RiskAverse. As in our
explanation of the Cel_Hi and Cel_Med coefficients in Model 8-4, the 810 value for Celerity in step two of
Model F1-2 is based on RiskAversesmc = 0.00 (i.e., URriskaverse = 2.925, where Uriskaverse €quals the grand
mean of RiskAverse). Thus, factoring out RiskAverse’s influence—and by extension, that of
RiskAverseemc as well—requires an equivalent value of RiskAverseemc for RiskAverse = 0.00. Since
RiskAverse = 2.925 is equivalent to RiskAversecwc = 0.00, then subtracting 2.925 (i.e., the grand mean
value of RiskAverse) from both sides of each equation produces a RiskAverse value of 0.00 and a
RiskAverseauc value of -2.925. Using this latter value of RiskAversecmc, we can now calculate the value
of B1o:

m1 = B1o + B11RiskAverseamc + r1 (F5)
0.559 = B10 + 0.151(-2.925) + (0) (F6)
B1o = 0.559 — (-0.442) (F7)

B1o =1.001 (F8)

Equations F1-F4 and F5-F6 demonstrate that, while both Models F1-1 and F1-2, respectively, are
ultimately based on a B10 intercept (i.e., the “average value” of 1) of 1.000, the mismatched centering
between steps one and two obscures that foundation and creates confusion. Using these incorrect 3
coefficients will, in turn, create further mistakes in the calculation of standardized B coefficients and their
respective rankings, which we now explore. Based on Equation 1, the value for B in Model F1-1is B = (B8

* sx)lsy = (1.788 * 0.61)/1.64 = 0.665; for Model F1-2, B = (0.559 * 1.09)/1.64 = 0.372. Thus, Celerity is
ranked higher than Severity in Model F1-1 but lower than Severity in Model F1-2 (i.e., the opposite
rankings in Models 9-1 and 9-2). The essence of the problem is the inconsistent modeling of the targeted
subject; that is, in one step the researcher models Celerity, Certainty, and Severity after controlling for
RiskAverse (i.e., on a subject exhibiting RiskAverse = 0.00), while, in the other step, the researcher
models Celerity, Certainty, and Severity based on a subject who exhibits an “average” level of RiskAverse
of 2.925.
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